Evaluate-5-5-x-2-x-1-2-dx-where-greatest-integer-function- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42823 by rahul 19 last updated on 03/Sep/18 Evaluate:∫−55x2[x+12]dx=?where[.]=greatestintegerfunction Commented by prof Abdo imad last updated on 03/Sep/18 changementx=−5+tgiveI=∫010(−5+t)2[−5+t+12]dt=∫010(t2−10t+25){−5+[t+12]}dt=−5∫010(t2−10t+25)dt+∫010(t2−10t+25)[t+12]dtbut∫010(t2−10t+25)dt=[t33−5t2+25t]010=1033−500+250=10003−250=1000−7503=2503alsowehave∫010(t2−10t+25)[t+12]dt=∑k=09∫kk+1(t2−10t+25)[t+12]dtbutweknowthat[x+y]=[x]+[y]+ξwithξ=0orξ=1∫010(t2−10t+25)[t+12]dt==∑k=09∫kk+1(t2−10t+25)(k+ξ)dt=∑k=09(k+ξ)[t33−5t2+25t]kk+1=∑k=09(k+ξ){(k+1)33−5(k+1)2+25(k+1)−k33+5k2−25k}=….. Answered by MJS last updated on 03/Sep/18 insteps:[x+12]=cx∈[−5;−4.5[⇒c=−5x∈[−4.5;−3.5[⇒c=−4x∈[−3.5;−2.5[⇒c=−3x∈[−2.5;−1.5[⇒c=−2x∈[−1.5;−.5[⇒c=−1x∈[−.5;.5[⇒c=0x∈[.5;1.5[⇒c=1x∈[1.5;2.5[⇒c=2x∈[2.5;3.5[⇒c=3x∈[3.5;4.5[⇒c=4x∈[4.5;5]⇒c=5∫5−5x2[x+12]dx=Σc∫x2dx=Σc3[x3]ab==−53((−4.5)3−(−5)3)−43((−3.5)3−(−4.5)3)−33((−2.5)3−(−3.5)3)……+33(3.53−2.53)+43(4.53−3.53)+53(53−4.53)==−53(53−4.53)+53(53−4.53)…=0 Commented by rahul 19 last updated on 03/Sep/18 Thank you sir ! �� Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: the-anser-is-the-folowing-Next Next post: if-x-sinx-than-prove-that-x-4-x-2-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.