Menu Close

Evaluate-5-5-x-2-x-1-2-dx-where-greatest-integer-function-




Question Number 42823 by rahul 19 last updated on 03/Sep/18
Evaluate :  ∫_(−5) ^( 5)  x^2 [x+(1/2)]dx =  ?  where [.]= greatest integer function
Evaluate:55x2[x+12]dx=?where[.]=greatestintegerfunction
Commented by prof Abdo imad last updated on 03/Sep/18
changement x =−5+t give  I = ∫_0 ^(10) (−5+t)^2 [−5+t +(1/2)]dt  =∫_0 ^(10) (t^2 −10t +25){−5 +[t+(1/2)]}dt  =−5 ∫_0 ^(10)  (t^2 −10t +25)dt +∫_0 ^(10) (t^2 −10t +25)[t+(1/2)]dt  but ∫_0 ^(10) (t^2 −10t +25)dt =[(t^3 /3) −5t^2  +25t]_0 ^(10)   =((10^3 )/3) −500 +250 =((1000)/3) −250 =((1000−750)/3)  =((250)/3)   also we have  ∫_0 ^(10) (t^2 −10t +25)[t+(1/2)]dt  =Σ_(k=0) ^9   ∫_k ^(k+1) (t^2 −10t +25)[t+(1/2)]dt  but we know that [x+y]=[x]+[y]+ξ withξ=0or ξ=1  ∫_0 ^(10) (t^2 −10t +25)[t+(1/2)]dt=  =Σ_(k=0) ^9  ∫_k ^(k+1) (t^2 −10t +25)(k +ξ)dt  =Σ_(k=0) ^9 (k+ξ) [(t^3 /3) −5t^2  +25t]_k ^(k+1)   =Σ_(k=0) ^9 (k+ξ){ (((k+1)^3 )/3) −5(k+1)^2  +25(k+1)  −(k^3 /3) +5k^2  −25k} =.....
changementx=5+tgiveI=010(5+t)2[5+t+12]dt=010(t210t+25){5+[t+12]}dt=5010(t210t+25)dt+010(t210t+25)[t+12]dtbut010(t210t+25)dt=[t335t2+25t]010=1033500+250=10003250=10007503=2503alsowehave010(t210t+25)[t+12]dt=k=09kk+1(t210t+25)[t+12]dtbutweknowthat[x+y]=[x]+[y]+ξwithξ=0orξ=1010(t210t+25)[t+12]dt==k=09kk+1(t210t+25)(k+ξ)dt=k=09(k+ξ)[t335t2+25t]kk+1=k=09(k+ξ){(k+1)335(k+1)2+25(k+1)k33+5k225k}=..
Answered by MJS last updated on 03/Sep/18
in steps:  [x+(1/2)]=c  x∈[−5; −4.5[ ⇒ c=−5  x∈[−4.5; −3.5[ ⇒ c=−4  x∈ [−3.5; −2.5[ ⇒ c=−3  x∈ [−2.5; −1.5[ ⇒ c=−2  x∈ [−1.5; −.5[ ⇒ c=−1  x∈ [−.5; .5[ ⇒ c=0  x∈ [.5; 1.5[ ⇒ c=1  x∈ [1.5; 2.5[ ⇒ c=2  x∈ [2.5; 3.5[ ⇒ c=3  x∈ [3.5; 4.5[ ⇒ c=4  x∈ [4.5; 5] ⇒ c=5  ∫_(−5) ^5 x^2 [x+(1/2)]dx=Σc∫x^2 dx=Σ(c/3)[x^3 ]_a ^b =  =−(5/3)((−4.5)^3 −(−5)^3 )−(4/3)((−3.5)^3 −(−4.5)^3 )−(3/3)((−2.5)^3 −(−3.5)^3 )...  ...+(3/3)(3.5^3 −2.5^3 )+(4/3)(4.5^3 −3.5^3 )+(5/3)(5^3 −4.5^3 )=  =−(5/3)(5^3 −4.5^3 )+(5/3)(5^3 −4.5^3 )...=0
insteps:[x+12]=cx[5;4.5[c=5x[4.5;3.5[c=4x[3.5;2.5[c=3x[2.5;1.5[c=2x[1.5;.5[c=1x[.5;.5[c=0x[.5;1.5[c=1x[1.5;2.5[c=2x[2.5;3.5[c=3x[3.5;4.5[c=4x[4.5;5]c=555x2[x+12]dx=Σcx2dx=Σc3[x3]ab==53((4.5)3(5)3)43((3.5)3(4.5)3)33((2.5)3(3.5)3)+33(3.532.53)+43(4.533.53)+53(534.53)==53(534.53)+53(534.53)=0
Commented by rahul 19 last updated on 03/Sep/18
Thank you sir ! ��

Leave a Reply

Your email address will not be published. Required fields are marked *