Menu Close

evaluate-a-b-7-b-c-7-c-a-7-a-b-3-b-c-3-c-a-3-a-2-b-2-c-2-ab-bc-ca-




Question Number 171642 by infinityaction last updated on 19/Jun/22
        evaluate         ((√(((a−b)^7  + (b−c)^7  + (c−a)^7 )/((a−b)^3  + (b−c)^3  + (c−a)^3 )))/(a^2 +b^2 +c^2 −ab−bc−ca)) =  ??
evaluate(ab)7+(bc)7+(ca)7(ab)3+(bc)3+(ca)3a2+b2+c2abbcca=??
Commented by infinityaction last updated on 19/Jun/22
   let a−b = 𝛂 , b−c = 𝛃 , c−a = 𝛄     𝛂+𝛃+𝛄 = Σα = 0       𝛂^3 +𝛃^3 +𝛄^3  = Σα^3  =  3𝛂𝛃𝛄          then        x^3 +(𝛂𝛃+𝛃𝛄+𝛄𝛂)x−𝛂𝛃𝛄 = 0      this equations has roots 𝛂 ,𝛃 ,𝛄        αβγ = P   and αβ+βγ+γα = Q       x^3  = P− Qx          x^7  = Px.x^3  − Qx^2 .x^3          x^7  = Px(P−Qx)−x^2 Q(P−Qx)         x^7  = P^2 x − PQx^2 −PQx^2 +Q^2 x^3          x^7  = P^2 x−2PQx^2 +Q^2 x^3     𝛂^(7 ) +𝛃^7 +𝛄^7  = P 𝚺𝛂 −2PQ 𝚺𝛂^2  + Q^2 𝚺𝛂^3         𝚺𝛂^7  = 3PQ^(2 ) −2PQ{ (𝚺𝛂)^2 −2𝚺𝛂𝛃 }        𝚺𝛂^7  = 3PQ^2 −2PQ(−2Q)        𝚺𝛂^(7 ) = 7PQ^2   and  𝚺𝛂^3  = 3P           ((𝚺𝛂^7 )/(𝚺𝛂^3 ))  =  (7/3)Q   a^2 +b^2 +c^2 −ab−bc−ca = (1/2)[(a−b)^2 +(b−c)^2 +(c−a)^2 ]    a^2 +b^2 +c^2 −ab−bc−ca = (1/2){𝛂^2 +𝛃^2 +𝛄^2 }       a^2 +b^2 +c^2 −ab−bc−ca =  (1/2){−2Q}= −Q     so         ∣  ((√((7/3)Q^2 ))/(−Q))  ∣=  ∣(((√((7/3) ))Q)/(−Q))∣ = (√(7/3))
\boldsymbollet\boldsymbola\boldsymbolb=\boldsymbolα,\boldsymbolb\boldsymbolc=\boldsymbolβ,\boldsymbolc\boldsymbola=\boldsymbolγ\boldsymbolα+\boldsymbolβ+\boldsymbolγ=Σα=0\boldsymbolα3+\boldsymbolβ3+\boldsymbolγ3=Σα3=3\boldsymbolαβγthen\boldsymbolx3+(\boldsymbolαβ+\boldsymbolβγ+\boldsymbolγα)\boldsymbolx\boldsymbolαβγ=0\boldsymbolthis\boldsymbolequations\boldsymbolhas\boldsymbolroots\boldsymbolα,\boldsymbolβ,\boldsymbolγαβγ=Pandαβ+βγ+γα=Q\boldsymbolx3=PQx\boldsymbolx7=\boldsymbolPx.\boldsymbolx3\boldsymbolQx2.\boldsymbolx3\boldsymbolx7=\boldsymbolPx(\boldsymbolP\boldsymbolQx)\boldsymbolx2\boldsymbolQ(\boldsymbolP\boldsymbolQx)\boldsymbolx7=\boldsymbolP2\boldsymbolx\boldsymbolPQx2\boldsymbolPQx2+\boldsymbolQ2\boldsymbolx3\boldsymbolx7=\boldsymbolP2\boldsymbolx2\boldsymbolPQx2+\boldsymbolQ2\boldsymbolx3\boldsymbolα7+\boldsymbolβ7+\boldsymbolγ7=\boldsymbolP\boldsymbolΣα2\boldsymbolPQ\boldsymbolΣα2+\boldsymbolQ2\boldsymbolΣα3\boldsymbolΣα7=3\boldsymbolPQ22\boldsymbolPQ{(\boldsymbolΣα)22\boldsymbolΣαβ}\boldsymbolΣα7=3\boldsymbolPQ22\boldsymbolPQ(2\boldsymbolQ)\boldsymbolΣα7=7\boldsymbolPQ2\boldsymboland\boldsymbolΣα3=3\boldsymbolP\boldsymbolΣα7\boldsymbolΣα3=73\boldsymbolQ\boldsymbola2+\boldsymbolb2+\boldsymbolc2\boldsymbolab\boldsymbolbc\boldsymbolca=12[(\boldsymbola\boldsymbolb)2+(\boldsymbolb\boldsymbolc)2+(\boldsymbolc\boldsymbola)2]\boldsymbola2+\boldsymbolb2+\boldsymbolc2\boldsymbolab\boldsymbolbc\boldsymbolca=12{\boldsymbolα2+\boldsymbolβ2+\boldsymbolγ2}\boldsymbola2+\boldsymbolb2+\boldsymbolc2\boldsymbolab\boldsymbolbc\boldsymbolca=12{2\boldsymbolQ}=\boldsymbolQso73\boldsymbolQ2\boldsymbolQ∣=73\boldsymbolQ\boldsymbolQ=73
Commented by Rasheed.Sindhi last updated on 19/Jun/22
P=(√(((a−b)^7  + (b−c)^7  + (c−a)^7 )/((a−b)^3  + (b−c)^3  + (c−a)^3 ))) ≥0  Q=a^2 +b^2 +c^2 −ab−bc−ca      =(1/2)(2a^2 +2b^2 +2c^2 −2ab−2bc−2ca)      =(1/2)(a^2 −2ab+b^2 +b^2 −2bc+c^2 +c^2 −2ca+c^2 )      =(1/2)( (a−b)^2 +(b−c)^2 +(c−a)^2 )  ∵ (a−b)^2 ≥0 , (b−c)^2 ≥0 , (c−a)^2 ≥0  ∴ Q≥0 but Q≠0⇒Q>0  ∵ P≥0 ∧ Q>0  ∴ (P/Q)≮0  ∴ (P/Q)≠−(√(7/3))
P=(ab)7+(bc)7+(ca)7(ab)3+(bc)3+(ca)30Q=a2+b2+c2abbcca=(1/2)(2a2+2b2+2c22ab2bc2ca)=(1/2)(a22ab+b2+b22bc+c2+c22ca+c2)=(1/2)((ab)2+(bc)2+(ca)2)(ab)20,(bc)20,(ca)20Q0butQ0Q>0P0Q>0PQ0PQ73
Commented by infinityaction last updated on 19/Jun/22
got it sir  thanks
gotitsirthanks
Commented by Rasheed.Sindhi last updated on 19/Jun/22
  If  the above is constant then it  means it′s an identity i-e ∀ a,b,c∈R  (provided that          (((a−b)^7  + (b−c)^7  + (c−a)^7 )/((a−b)^3  + (b−c)^3  + (c−a)^3 ))≥0)  it has same value.  Let a=3,b=2,c=1:      ((√(((a−b)^7  + (b−c)^7  + (c−a)^7 )/((a−b)^3  + (b−c)^3  + (c−a)^3 )))/(a^2 +b^2 +c^2 −ab−bc−ca))      = ((√(((3−2)^7  + (2−1)^7  + (1−3)^7 )/((3−2)^3  + (2−1)^3  + (1−3)^3 )))/(3^2 +2^2 +1^2 −3∙2−2∙1−1∙3)) =  ??      =((√((1 + 1 + (−128))/(1 + 1 + (−8))))/(9+4+1−6−2−3))      = ((√((−126)/(−6)))/(9+4+1−6−2−3))      = ((√((126)/6))/3) = ((√(21))/3)=(√((21)/9)) =(√(7/3))  Certainly it′s equal to (√(7/3))  (not −(√(7/3)) )
Iftheaboveisconstantthenitmeansitsanidentityiea,b,cR(providedthat(ab)7+(bc)7+(ca)7(ab)3+(bc)3+(ca)30)ithassamevalue.Leta=3,b=2,c=1:(ab)7+(bc)7+(ca)7(ab)3+(bc)3+(ca)3a2+b2+c2abbcca=(32)7+(21)7+(13)7(32)3+(21)3+(13)332+22+12322113=??=1+1+(128)1+1+(8)9+4+1623=12669+4+1623=12663=213=219=73Certainlyitsequalto73(not73)
Commented by Tawa11 last updated on 25/Jun/22
Great sir
Greatsir
Answered by Rasheed.Sindhi last updated on 19/Jun/22
    ((√(((a−b)^7  + (b−c)^7  + (c−a)^7 )/((a−b)^3  + (b−c)^3  + (c−a)^3 )))/(a^2 +b^2 +c^2 −ab−bc−ca))  =((√((7(a−b)(b−c)(c−a)(a^2 +b^2 +c^2 −ab−bc−ca)^2 )/(3(a−b)(b−c)(c−a))))/(a^2 +b^2 +c^2 −ab−bc−ca))  =(((√(7/3))×(a^2 +b^2 +c^2 −ab−bc−ca))/((a^2 +b^2 +c^2 −ab−bc−ca)))  =(√(7/3))
(ab)7+(bc)7+(ca)7(ab)3+(bc)3+(ca)3a2+b2+c2abbcca=7\cancel(ab)(bc)(ca)(a2+b2+c2abbcca)23\cancel(ab)(bc)(ca)a2+b2+c2abbcca=73×\cancel(a2+b2+c2abbcca)\cancel(a2+b2+c2abbcca)=73
Commented by infinityaction last updated on 19/Jun/22
sir can you tell me factor of  (a−b)^7 +(b−c)^7 +(c−a)^7
sircanyoutellmefactorof(ab)7+(bc)7+(ca)7
Commented by Rasheed.Sindhi last updated on 19/Jun/22
(a−b)^7  + (b−c)^7  + (c−a)^7    =7(a−b)(b−c)(c−a)(a^2 +b^2 +c^2 −ab−bc−ca)^2   (With the help of calculator)
(ab)7+(bc)7+(ca)7=7(ab)(bc)(ca)(a2+b2+c2abbcca)2(Withthehelpofcalculator)

Leave a Reply

Your email address will not be published. Required fields are marked *