Question Number 171642 by infinityaction last updated on 19/Jun/22

Commented by infinityaction last updated on 19/Jun/22
![let a−b = 𝛂 , b−c = 𝛃 , c−a = 𝛄 𝛂+𝛃+𝛄 = Σα = 0 𝛂^3 +𝛃^3 +𝛄^3 = Σα^3 = 3𝛂𝛃𝛄 then x^3 +(𝛂𝛃+𝛃𝛄+𝛄𝛂)x−𝛂𝛃𝛄 = 0 this equations has roots 𝛂 ,𝛃 ,𝛄 αβγ = P and αβ+βγ+γα = Q x^3 = P− Qx x^7 = Px.x^3 − Qx^2 .x^3 x^7 = Px(P−Qx)−x^2 Q(P−Qx) x^7 = P^2 x − PQx^2 −PQx^2 +Q^2 x^3 x^7 = P^2 x−2PQx^2 +Q^2 x^3 𝛂^(7 ) +𝛃^7 +𝛄^7 = P 𝚺𝛂 −2PQ 𝚺𝛂^2 + Q^2 𝚺𝛂^3 𝚺𝛂^7 = 3PQ^(2 ) −2PQ{ (𝚺𝛂)^2 −2𝚺𝛂𝛃 } 𝚺𝛂^7 = 3PQ^2 −2PQ(−2Q) 𝚺𝛂^(7 ) = 7PQ^2 and 𝚺𝛂^3 = 3P ((𝚺𝛂^7 )/(𝚺𝛂^3 )) = (7/3)Q a^2 +b^2 +c^2 −ab−bc−ca = (1/2)[(a−b)^2 +(b−c)^2 +(c−a)^2 ] a^2 +b^2 +c^2 −ab−bc−ca = (1/2){𝛂^2 +𝛃^2 +𝛄^2 } a^2 +b^2 +c^2 −ab−bc−ca = (1/2){−2Q}= −Q so ∣ ((√((7/3)Q^2 ))/(−Q)) ∣= ∣(((√((7/3) ))Q)/(−Q))∣ = (√(7/3))](https://www.tinkutara.com/question/Q171651.png)
Commented by Rasheed.Sindhi last updated on 19/Jun/22

Commented by infinityaction last updated on 19/Jun/22

Commented by Rasheed.Sindhi last updated on 19/Jun/22

Commented by Tawa11 last updated on 25/Jun/22

Answered by Rasheed.Sindhi last updated on 19/Jun/22

Commented by infinityaction last updated on 19/Jun/22

Commented by Rasheed.Sindhi last updated on 19/Jun/22
