Menu Close

Evaluate-A-x-y-2-dxdy-over-the-area-bounded-by-the-ellipse-x-2-a-2-y-2-b-2-1-Anybody-




Question Number 190052 by Mastermind last updated on 26/Mar/23
Evaluate ∫∫_A (x+y)^2 dxdy over the  area bounded by the ellipse   (x^2 /a^2 ) + (y^2 /b^2 ) = 1      Anybody?
EvaluateA(x+y)2dxdyovertheareaboundedbytheellipsex2a2+y2b2=1Anybody?
Answered by CElcedricjunior last updated on 26/Mar/23
∫∫_A (x+y)^2 dxdy  A={(x;y);(x^2 /a^2 )+(y^2 /b^2 )=1}  En changeant les coordonnees de cartesienne a^�  polaire  on a : { ((x=arcos𝛉)),((y=brsin𝛉)) :}1>r>0 𝛉∈[0;2𝛑]  et dxdy=∣ determinant (((acos𝛉       −arsin𝛉)),((bsin𝛉            brcos𝛉)))∣drd𝛉  dxdy=abrdrd𝛉  A={(r;𝛉) 0<r<1;0≤𝛉≤2𝛑} ■Moivre  ∫∫_A abr^3 (acos𝛉+bsin𝛉)^2 drd𝛉=k  k=∫_0 ^(2𝛑) [((ab)/4)r^4 (acos𝛉+bsin𝛉)^2 ]_0 ^1 d𝛉  =((ab)/4)∫_0 ^(2𝛑) (a^2 cos𝛉^2 +2abcos𝛉sin𝛉+b^2 sin^2 𝛉)d𝛉  ((ab)/4)[a^2 ((1/2)𝛉+(1/4)sin2𝛉)−((abcos2𝛉)/2)+b^2 ((1/2)𝛉−(1/4)sin2𝛉)]_0 ^(2𝛑)   =((ab)/4)(𝛑(a^2 +b)) ★Cedric junior  =(𝛑/4)ab(a^2 +b^2 )
A(x+y)2dxdyA={(x;y);x2a2+y2b2=1}Enchangeantlescoordonneesdecartesiennea`polaireona:{x=arcosθy=brsinθ1>r>0θ[0;2π]etdxdy=∣|acosθarsinθbsinθbrcosθ|drdθdxdy=abrdrdθA={(r;θ)0<r<1;0θ2π}◼MoivreAabr3(acosθ+bsinθ)2drdθ=kk=02π[ab4r4(acosθ+bsinθ)2]01dθ=ab402π(a2cosθ2+2abcosθsinθ+b2sinθ2)dθab4[a2(12θ+14sin2θ)abcos2θ2+b2(12θ14sin2θ)]02π=ab4(π(a2+b))Cedricjunior=π4ab(a2+b2)

Leave a Reply

Your email address will not be published. Required fields are marked *