Menu Close

Evaluate-cos-20-cos-40-cos-80-This-question-is-just-for-fun-and-practice-Evryone-who-wants-can-answer-this-question-




Question Number 17983 by alex041103 last updated on 13/Jul/17
Evaluate cos(20°)cos(40°)cos(80°).  This question is just for fun and practice.  Evryone who wants can answer this question.
$${Evaluate}\:{cos}\left(\mathrm{20}°\right){cos}\left(\mathrm{40}°\right){cos}\left(\mathrm{80}°\right). \\ $$$${This}\:{question}\:{is}\:{just}\:{for}\:{fun}\:{and}\:{practice}. \\ $$$${Evryone}\:{who}\:{wants}\:{can}\:{answer}\:{this}\:{question}. \\ $$
Answered by ajfour last updated on 13/Jul/17
cos 20°cos 40°cos 80°=    (1/(2sin 20°))[2sin 20°cos 20°]cos 40°cos 80°  =(1/(4sin 20°))[2sin 40°cos 40°]cos 80°  =(1/(8sin 20°))[2sin 80°cos 80°]  = ((sin (180°−20°))/(8sin 20°)) =(1/8) .
$$\mathrm{cos}\:\mathrm{20}°\mathrm{cos}\:\mathrm{40}°\mathrm{cos}\:\mathrm{80}°= \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2sin}\:\mathrm{20}°}\left[\mathrm{2sin}\:\mathrm{20}°\mathrm{cos}\:\mathrm{20}°\right]\mathrm{cos}\:\mathrm{40}°\mathrm{cos}\:\mathrm{80}° \\ $$$$=\frac{\mathrm{1}}{\mathrm{4sin}\:\mathrm{20}°}\left[\mathrm{2sin}\:\mathrm{40}°\mathrm{cos}\:\mathrm{40}°\right]\mathrm{cos}\:\mathrm{80}° \\ $$$$=\frac{\mathrm{1}}{\mathrm{8sin}\:\mathrm{20}°}\left[\mathrm{2sin}\:\mathrm{80}°\mathrm{cos}\:\mathrm{80}°\right] \\ $$$$=\:\frac{\mathrm{sin}\:\left(\mathrm{180}°−\mathrm{20}°\right)}{\mathrm{8sin}\:\mathrm{20}°}\:=\frac{\mathrm{1}}{\mathrm{8}}\:. \\ $$
Commented by alex041103 last updated on 13/Jul/17
well done sir
$${well}\:{done}\:{sir} \\ $$
Commented by alex041103 last updated on 13/Jul/17
if you want you can try Q.17525
$${if}\:{you}\:{want}\:{you}\:{can}\:{try}\:{Q}.\mathrm{17525} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *