Menu Close

Evaluate-cot-1-1-sinx-1-sinx-1-sinx-1-sinx-




Question Number 51367 by rahul 19 last updated on 26/Dec/18
Evaluate:  cot^(−1) [(((√(1−sinx))+(√(1+sinx)))/( (√(1−sinx))−(√(1+sinx))))] = ?
$${Evaluate}: \\ $$$$\mathrm{cot}^{−\mathrm{1}} \left[\frac{\sqrt{\mathrm{1}−\mathrm{sin}{x}}+\sqrt{\mathrm{1}+\mathrm{sin}{x}}}{\:\sqrt{\mathrm{1}−\mathrm{sin}{x}}−\sqrt{\mathrm{1}+\mathrm{sin}{x}}}\right]\:=\:? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18
case−1  a>b  a=sin(x/2)  b=cos(x/2)    (N_r /D_r )=((a−b+a+b)/(a−b−a−b))=((−a)/b)=−tan(x/2)=cot((π/2)+(x/2))  so ans is (π/2)+(x/2)  if b>a  (N_r /D_r )=((b−a+b+a)/(b−a−b−a))=((−b)/a)=−cot(x/2)=cot(((−x)/2))  ans is ((−x)/2)  pls check...x lies in which qusdrant????
$${case}−\mathrm{1}\:\:{a}>{b} \\ $$$${a}={sin}\frac{{x}}{\mathrm{2}}\:\:{b}={cos}\frac{{x}}{\mathrm{2}}\:\: \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{{a}−{b}+{a}+{b}}{{a}−{b}−{a}−{b}}=\frac{−{a}}{{b}}=−{tan}\frac{{x}}{\mathrm{2}}={cot}\left(\frac{\pi}{\mathrm{2}}+\frac{{x}}{\mathrm{2}}\right) \\ $$$${so}\:{ans}\:{is}\:\frac{\pi}{\mathrm{2}}+\frac{{x}}{\mathrm{2}} \\ $$$${if}\:{b}>{a} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{{b}−{a}+{b}+{a}}{{b}−{a}−{b}−{a}}=\frac{−{b}}{{a}}=−{cot}\frac{{x}}{\mathrm{2}}={cot}\left(\frac{−{x}}{\mathrm{2}}\right) \\ $$$${ans}\:{is}\:\frac{−{x}}{\mathrm{2}} \\ $$$${pls}\:{check}…{x}\:{lies}\:{in}\:{which}\:{qusdrant}???? \\ $$
Commented by peter frank last updated on 26/Dec/18
i got the same ans
$${i}\:{got}\:{the}\:{same}\:{ans}\: \\ $$$$ \\ $$
Answered by ajfour last updated on 26/Dec/18
let cot θ = (((√(1−cos 2y))+(√(1+cos 2y)))/( (√(1−cos 2y))−(√(1+cos 2y))))    where  x = (π/2)−2y  ⇒  y = (π/4)−(x/2)  ⇒ cot θ = ((sin y+cos y)/(sin y−cos y)) = ((cos (y−(π/4)))/(sin (y−(π/4))))  or   cot θ = cot (y−(π/4)) = cot (−(x/2))  ⇒  or  tan θ = tan (−(x/2))   θ = cot^(−1) [(((√(1−sinx))+(√(1+sinx)))/( (√(1−sinx))−(√(1+sinx))))]      = n𝛑−(x/2) .
$${let}\:\mathrm{cot}\:\theta\:=\:\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{y}}+\sqrt{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{y}}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{y}}−\sqrt{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{y}}} \\ $$$$\:\:{where}\:\:{x}\:=\:\frac{\pi}{\mathrm{2}}−\mathrm{2}{y}\:\:\Rightarrow\:\:{y}\:=\:\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{cot}\:\theta\:=\:\frac{\mathrm{sin}\:{y}+\mathrm{cos}\:{y}}{\mathrm{sin}\:{y}−\mathrm{cos}\:{y}}\:=\:\frac{\mathrm{cos}\:\left({y}−\frac{\pi}{\mathrm{4}}\right)}{\mathrm{sin}\:\left({y}−\frac{\pi}{\mathrm{4}}\right)} \\ $$$${or}\:\:\:\mathrm{cot}\:\theta\:=\:\mathrm{cot}\:\left({y}−\frac{\pi}{\mathrm{4}}\right)\:=\:\mathrm{cot}\:\left(−\frac{{x}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:{or}\:\:\mathrm{tan}\:\theta\:=\:\mathrm{tan}\:\left(−\frac{{x}}{\mathrm{2}}\right) \\ $$$$\:\theta\:=\:\mathrm{cot}^{−\mathrm{1}} \left[\frac{\sqrt{\mathrm{1}−\mathrm{sin}{x}}+\sqrt{\mathrm{1}+\mathrm{sin}{x}}}{\:\sqrt{\mathrm{1}−\mathrm{sin}{x}}−\sqrt{\mathrm{1}+\mathrm{sin}{x}}}\right] \\ $$$$\:\:\:\:=\:\boldsymbol{{n}\pi}−\frac{\boldsymbol{{x}}}{\mathrm{2}}\:. \\ $$
Answered by peter frank last updated on 26/Dec/18
cot^(−1) (((sin(x/2)−cos(x/2)+sin (x/2) +cos (x/2))/(sin (x/2)−cos (x/2)−sin (x/2)−cos (x/2))))  cot^(−1) (((2sin (x/2))/(−2cos (x/2))))  cot^(−1) (−tan (x/(2 )))  tan^(−1) x+cot^(−1) x=(π/2)  cot^(−1) x=(π/2)−tan^(−1) x  cot^(−1) (−tan (x/2))=(π/2)−tan^(−1) (−tan (x/2))  (π/2)+(x/2)
$$\mathrm{cot}^{−\mathrm{1}} \left(\frac{{sin}\frac{{x}}{\mathrm{2}}−\mathrm{cos}\frac{{x}}{\mathrm{2}}+\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\:+\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}{\mathrm{sin}\:\frac{{x}}{\mathrm{2}}−\mathrm{cos}\:\frac{{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{{x}}{\mathrm{2}}−\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}\right) \\ $$$$\mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{2sin}\:\frac{{x}}{\mathrm{2}}}{−\mathrm{2cos}\:\frac{{x}}{\mathrm{2}}}\right) \\ $$$$\mathrm{cot}^{−\mathrm{1}} \left(−\mathrm{tan}\:\frac{{x}}{\mathrm{2}\:}\right) \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}+\mathrm{cot}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{cot}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} {x} \\ $$$$\mathrm{cot}^{−\mathrm{1}} \left(−\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(−\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right) \\ $$$$\frac{\pi}{\mathrm{2}}+\frac{{x}}{\mathrm{2}} \\ $$$$ \\ $$
Commented by peter frank last updated on 26/Dec/18
rahul please check
$${rahul}\:{please}\:{check}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *