Menu Close

Evaluate-cot-1-1-sinx-1-sinx-1-sinx-1-sinx-




Question Number 51367 by rahul 19 last updated on 26/Dec/18
Evaluate:  cot^(−1) [(((√(1−sinx))+(√(1+sinx)))/( (√(1−sinx))−(√(1+sinx))))] = ?
Evaluate:cot1[1sinx+1+sinx1sinx1+sinx]=?
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18
case−1  a>b  a=sin(x/2)  b=cos(x/2)    (N_r /D_r )=((a−b+a+b)/(a−b−a−b))=((−a)/b)=−tan(x/2)=cot((π/2)+(x/2))  so ans is (π/2)+(x/2)  if b>a  (N_r /D_r )=((b−a+b+a)/(b−a−b−a))=((−b)/a)=−cot(x/2)=cot(((−x)/2))  ans is ((−x)/2)  pls check...x lies in which qusdrant????
case1a>ba=sinx2b=cosx2NrDr=ab+a+babab=ab=tanx2=cot(π2+x2)soansisπ2+x2ifb>aNrDr=ba+b+ababa=ba=cotx2=cot(x2)ansisx2plscheckxliesinwhichqusdrant????
Commented by peter frank last updated on 26/Dec/18
i got the same ans
igotthesameans
Answered by ajfour last updated on 26/Dec/18
let cot θ = (((√(1−cos 2y))+(√(1+cos 2y)))/( (√(1−cos 2y))−(√(1+cos 2y))))    where  x = (π/2)−2y  ⇒  y = (π/4)−(x/2)  ⇒ cot θ = ((sin y+cos y)/(sin y−cos y)) = ((cos (y−(π/4)))/(sin (y−(π/4))))  or   cot θ = cot (y−(π/4)) = cot (−(x/2))  ⇒  or  tan θ = tan (−(x/2))   θ = cot^(−1) [(((√(1−sinx))+(√(1+sinx)))/( (√(1−sinx))−(√(1+sinx))))]      = n𝛑−(x/2) .
letcotθ=1cos2y+1+cos2y1cos2y1+cos2ywherex=π22yy=π4x2cotθ=siny+cosysinycosy=cos(yπ4)sin(yπ4)orcotθ=cot(yπ4)=cot(x2)ortanθ=tan(x2)θ=cot1[1sinx+1+sinx1sinx1+sinx]=nπx2.
Answered by peter frank last updated on 26/Dec/18
cot^(−1) (((sin(x/2)−cos(x/2)+sin (x/2) +cos (x/2))/(sin (x/2)−cos (x/2)−sin (x/2)−cos (x/2))))  cot^(−1) (((2sin (x/2))/(−2cos (x/2))))  cot^(−1) (−tan (x/(2 )))  tan^(−1) x+cot^(−1) x=(π/2)  cot^(−1) x=(π/2)−tan^(−1) x  cot^(−1) (−tan (x/2))=(π/2)−tan^(−1) (−tan (x/2))  (π/2)+(x/2)
cot1(sinx2cosx2+sinx2+cosx2sinx2cosx2sinx2cosx2)cot1(2sinx22cosx2)cot1(tanx2)tan1x+cot1x=π2cot1x=π2tan1xcot1(tanx2)=π2tan1(tanx2)π2+x2
Commented by peter frank last updated on 26/Dec/18
rahul please check
rahulpleasecheck

Leave a Reply

Your email address will not be published. Required fields are marked *