Menu Close

Evaluate-dx-x-2-4x-13-




Question Number 81482 by Bash last updated on 13/Feb/20
Evaluate  ∫_(−∞) ^∞ (dx/(x^2 +4x+13)).
Evaluatedxx2+4x+13.
Commented by abdomathmax last updated on 13/Feb/20
I=∫_(−∞) ^(+∞)  (dx/(x^2  +4x +13)) =∫_(−∞) ^(+∞)  (dx/(x^2 +4x+4+9))  =∫_(−∞) ^(+∞)  (dx/((x+2)^2  +9)) =_(x+2=3u)   ∫_(−∞) ^(+∞) ((3du)/(9(u^2 +1)))   =(1/3) ∫_(−∞) ^(+∞)  (du/(u^2 +1))=(1/3)[arctanu]_(−∞) ^(+∞) =(1/3)((π/2)−(−(π/2)))  =(π/3)
I=+dxx2+4x+13=+dxx2+4x+4+9=+dx(x+2)2+9=x+2=3u+3du9(u2+1)=13+duu2+1=13[arctanu]+=13(π2(π2))=π3
Answered by MJS last updated on 13/Feb/20
∫(dx/(x^2 +4x+13))=       [t=((x+2)/3) → dx=3dt]  =(1/3)∫(dt/(t^2 +1))=(1/3)arctan t =(1/3)arctan ((x+2)/3) +C  ∫_(−∞) ^(+∞) (dx/(x^2 +4x+13))=(π/3)
dxx2+4x+13=[t=x+23dx=3dt]=13dtt2+1=13arctant=13arctanx+23+C+dxx2+4x+13=π3

Leave a Reply

Your email address will not be published. Required fields are marked *