Menu Close

Evaluate-dx-x-4-9-x-2-




Question Number 179405 by Acem last updated on 29/Oct/22
 Evaluate ∫ (dx/(x^4  (√(9−x^2 ))))
Evaluatedxx49x2
Answered by greougoury555 last updated on 29/Oct/22
 M=∫ (dx/(x^3  x^2  (√((9/x^2 )−1)))) dx   M= ∫ (x^(−3) /(x^2  (√(9x^(−2) −1)))) dx   let j^2  = 9x^(−2) −1 ⇒x^(−2) = (1/9)(j^2 +1)    2j dj =−18x^(−3)  dx   M= ∫ (((−(1/9)j)dj)/((1/9)(j^2 +1).j))=−∫ (dj/(j^2 +1))  M=− arctan ((√((9/x^2 ) −1)) )+c   M= − arctan ((x/( (√(9−x^2 )))) )+ c
M=dxx3x29x21dxM=x3x29x21dxletj2=9x21x2=19(j2+1)2jdj=18x3dxM=(19j)dj19(j2+1).j=djj2+1M=arctan(9x21)+cM=arctan(x9x2)+c
Commented by Acem last updated on 29/Oct/22
 M= ∫ (x^(−3) /(x^2  (√(9x^(−2) −1)))) dx   M= ∫ (((−(1/9)j)dj)/((1/9)(j^2 +1).j))=−∫ (dj/(j^2 +1))  x^2  ≠ (1/9) (j^2  + 1)
M=x3x29x21dxM=(19j)dj19(j2+1).j=djj2+1x219(j2+1)
Commented by greougoury555 last updated on 29/Oct/22
hmmm...x^(−2)     ^�  not x^2
hmmmx2¯notx2
Commented by Acem last updated on 29/Oct/22
sure x^(−2) , and something will change
surex2,andsomethingwillchange
Commented by Acem last updated on 29/Oct/22
By the way, your method is very good!
Bytheway,yourmethodisverygood!
Commented by Acem last updated on 29/Oct/22
When you supposed j^2 = 9x^(−2) −1 you got   j dj= −9 x^(−3)  dx, x^(−2) = (1/9) (j^2 +1)   you had to write M= ∫((x^(−3)  x^(−2) )/( (√(9x^(−2) −1)))) dx then  M= ((−1)/(81))∫(j^2 +1) dj= ((−1)/(81)) ((1/3)j^3 + j)+c     M= ((−1)/(81)) ( ((√((9−x^2 )^3 ))/(3x^3 )) + ((√(9−x^2 ))/x))+ c
Whenyousupposedj2=9x21yougotjdj=9x3dx,x2=19(j2+1)youhadtowriteM=x3x29x21dxthenM=181(j2+1)dj=181(13j3+j)+cM=181((9x2)33x3+9x2x)+c
Answered by ARUNG_Brandon_MBU last updated on 29/Oct/22
I=∫(dx/(x^4 (√(9−x^2 ))))=∫(dx/(x^5 (√((9/x^2 )−1)))), t=(1/x^2 ) ⇒dt=−(2/x^3 )dx    =−(1/2)∫(t/( (√(9t−1))))dt=−(1/(18))∫((9t−1+1)/( (√(9t−1))))dt    =−(1/(18))∫((√(9t−1))+(1/( (√(9t−1)))))dt    =−(1/(162))((2/3)(9t−1)^(3/2) +2(√(9t−1)))+C    =−(1/(81))(((√((9−x^2 )^3 ))/(3x^3 ))+((√(9−x^2 ))/x))+C
I=dxx49x2=dxx59x21,t=1x2dt=2x3dx=12t9t1dt=1189t1+19t1dt=118(9t1+19t1)dt=1162(23(9t1)32+29t1)+C=181((9x2)33x3+9x2x)+C
Commented by Acem last updated on 29/Oct/22
It′s very good substitution!! Thanks
Itsverygoodsubstitution!!Thanks
Answered by ARUNG_Brandon_MBU last updated on 29/Oct/22
I=∫(dx/(x^4 (√(9−x^2 )))), x=3sinθ    =(1/(81))∫((cosθ)/(sin^4 θ∣cosθ∣))dθ=((sgn(cosθ))/(81))∫(dθ/(sin^4 θ))    =((sgn(cosθ))/(81))∫cosec^2 θ(cot^2 θ+1)dθ    =−((sgn(cosθ))/(81))(((cot^3 θ)/3)+cotθ)+C
I=dxx49x2,x=3sinθ=181cosθsin4θcosθdθ=sgn(cosθ)81dθsin4θ=sgn(cosθ)81cosec2θ(cot2θ+1)dθ=sgn(cosθ)81(cot3θ3+cotθ)+C
Commented by Acem last updated on 29/Oct/22
This is my method. By the way as long as   the integration is undefined, we can deem that   ∣cos θ∣= cos θ but if it was limit we have to compt   the limits and see it domain   if ((−π)/2)≤ θ≤ (π/2) then ∣cos θ∣= cos θ, otherwise −cos θ   Thanks for you
Thisismymethod.Bythewayaslongastheintegrationisundefined,wecandeemthatcosθ∣=cosθbutifitwaslimitwehavetocomptthelimitsandseeitdomainifπ2θπ2thencosθ∣=cosθ,otherwisecosθThanksforyou
Commented by ARUNG_Brandon_MBU last updated on 29/Oct/22
OK thanks
Answered by Acem last updated on 29/Oct/22
 x= 3 sin θ ⇒ dx= 3 cos θ dθ   (√(9−x^2 ))= 3 (√(cos^2  θ))= 3 ∣cos θ∣= 3 cos θ^( Integ. undefined)   I= ∫ ((3 cos θ)/(81 sin^4  θ 3 cos θ)) dθ= (1/(81))∫cosec^2  θ (cot^2  θ+1) dθ   = ((−1)/(81)) ((1/3) cot^3  θ + cot θ)+ c ;  { (((cot θ)^′ = − cosec^2  θ)),((∫cosec^2  θdθ= −cot θ)) :}   I= ((−1)/(81)) ( ((√((9−x)^3 ))/(3 x^3 )) + ((√(9−x^2 ))/x) ) + c   Explan. sin θ= (x/3) ⇒ adjacent= (√(9−x^2 ))  Thanks for all who solved
x=3sinθdx=3cosθdθ9x2=3cos2θ=3cosθ∣=3cosθInteg.undefinedI=3cosθ81sin4θ3cosθdθ=181cosec2θ(cot2θ+1)dθ=181(13cot3θ+cotθ)+c;{(cotθ)=cosec2θcosec2θdθ=cotθI=181((9x)33x3+9x2x)+cExplan.sinθ=x3adjacent=9x2Thanksforallwhosolved

Leave a Reply

Your email address will not be published. Required fields are marked *