Menu Close

evaluate-E-15Zdv-where-E-is-the-region-between-2x-y-z-4-and-4x-4y-2z-20-which-is-in-front-of-the-region-in-the-yz-plane-bounded-by-z-2y-2-and-z-4y-




Question Number 189263 by Gbenga last updated on 14/Mar/23
evaluate ∫∫_E ∫15Zdv, where E   is the region between 2x+y+z=4   and 4x+4y+2z=20 which is in   front of the region in the yz plane   bounded by z=2y^2  and z=(√(4y))
$$\boldsymbol{{evaluate}}\:\int\int_{\boldsymbol{\mathrm{E}}} \int\mathrm{15}{Zdv},\:{where}\:{E} \\ $$$$\:{is}\:{the}\:{region}\:{between}\:\mathrm{2}{x}+{y}+{z}=\mathrm{4} \\ $$$$\:{and}\:\mathrm{4}{x}+\mathrm{4}{y}+\mathrm{2}{z}=\mathrm{20}\:{which}\:{is}\:{in}\: \\ $$$${front}\:{of}\:{the}\:{region}\:{in}\:{the}\:{yz}\:{plane}\: \\ $$$${bounded}\:{by}\:{z}=\mathrm{2}{y}^{\mathrm{2}} \:{and}\:{z}=\sqrt{\mathrm{4}{y}} \\ $$
Commented by Gbenga last updated on 15/Mar/23
evaluate ∫∫_E ∫15Zdv, where E   is the region between 2x+y+z=4   and 4x+4y+2z=20 which is in   front of the region in the yz plane   bounded by z=2y^2  and z=(√(4y))  i have make adjustment
$$\boldsymbol{{evaluate}}\:\int\int_{\boldsymbol{\mathrm{E}}} \int\mathrm{15}{Zdv},\:{where}\:{E} \\ $$$$\:{is}\:{the}\:{region}\:{between}\:\mathrm{2}{x}+{y}+{z}=\mathrm{4} \\ $$$$\:{and}\:\mathrm{4}{x}+\mathrm{4}{y}+\mathrm{2}{z}=\mathrm{20}\:{which}\:{is}\:{in}\: \\ $$$${front}\:{of}\:{the}\:{region}\:{in}\:{the}\:{yz}\:{plane}\: \\ $$$${bounded}\:{by}\:{z}=\mathrm{2}{y}^{\mathrm{2}} \:{and}\:{z}=\sqrt{\mathrm{4}{y}} \\ $$$${i}\:{have}\:{make}\:{adjustment} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *