Menu Close

Evaluate-k-1-2n-1-1-k-1-k-3-




Question Number 41454 by Fawomath last updated on 07/Aug/18
Evaluate Σ_(k=1) ^(2n−1) (−1)^(k−1) k^3
Evaluate2n1k=1(1)k1k3
Commented by maxmathsup by imad last updated on 07/Aug/18
let S(x)=Σ_(k=0) ^N  (−1)^k  x^k    we have S^′ (x)=Σ_(k=1) ^N (−1)^k k x^(k−1)  ⇒  xS^′ (x)=Σ_(k=1) ^n (−1)^k k x^k  ⇒ (xS^′ (x))^′  =Σ_(k=1) ^N  (−1)^k  k^2  x^(k−1)  ⇒  S^′ (x) +x S^(′′) (x) =Σ_(k=1) ^N (−1)^k k^2  x^(k−1)  ⇒  xS^′ (x) +x^2  S^(′′) (x) =Σ_(k=1) ^N  (−1)^k k^2 x^k  ⇒  (xS^′ (x) +x^2 S^(′′) (x))^′ = Σ_(k=1) ^N (−1)^k k^3  x^(k−1)  ⇒  S^′ (x) +xS^(′′) (x) +2x S^(′′) (x) +x^2  S^((3)) (x) = Σ_(k=1) ^N  (−1)^k  k^3  x^(k−1)  ⇒  xS^′ (x)  +3x^2  S^((2)) (x) +x^3  S^((3)) (x) =Σ_(k=1) ^N  (−1)^k  k^3  x^(k  )    let take x=1 ⇒  Σ_(k=1) ^N  (−1)^k  x^k  = S^′ (1) +3 S^((2)) (1) +S^((3)) (1)  but  S(x)=Σ_(k=0) ^N (−x)^k   =((1−(−x)^(N+1) )/(1+x))  = ((1 −(−1)^(N+1)  x^(N+1) )/(1+x))    (x≠−1)  = ((1+(−1)^N  x^(N+1) )/(1+x)) ⇒ S^′ (x) =(((N+1)(−1)^N x^N (1+x) −(1+(−1)^N x^(N+1) ))/((1+x)^2 ))  =(((N+1)(−1)^N  x^N  +(N+1)(−1)^N  x^(N+1)  −1−(−1)^N  x^(N+1) )/((1+x)^2 ))  =(((N+1)(−1)^N  x^N  +N(−1)^N  x^(N+1)  −1)/((1+x^ )^2 ))  ⇒ S^′ (1)=(((N+1)(−1)^N  +N(−1)^N )/4)  =(((2N+1)(−1)^N )/4)   also we must calculate S^((2)) (1) and S^((3)) (1) and  take N =2n−1....
letS(x)=k=0N(1)kxkwehaveS(x)=k=1N(1)kkxk1xS(x)=k=1n(1)kkxk(xS(x))=k=1N(1)kk2xk1S(x)+xS(x)=k=1N(1)kk2xk1xS(x)+x2S(x)=k=1N(1)kk2xk(xS(x)+x2S(x))=k=1N(1)kk3xk1S(x)+xS(x)+2xS(x)+x2S(3)(x)=k=1N(1)kk3xk1xS(x)+3x2S(2)(x)+x3S(3)(x)=k=1N(1)kk3xklettakex=1k=1N(1)kxk=S(1)+3S(2)(1)+S(3)(1)butS(x)=k=0N(x)k=1(x)N+11+x=1(1)N+1xN+11+x(x1)=1+(1)NxN+11+xS(x)=(N+1)(1)NxN(1+x)(1+(1)NxN+1)(1+x)2=(N+1)(1)NxN+(N+1)(1)NxN+11(1)NxN+1(1+x)2=(N+1)(1)NxN+N(1)NxN+11(1+x)2S(1)=(N+1)(1)N+N(1)N4=(2N+1)(1)N4alsowemustcalculateS(2)(1)andS(3)(1)andtakeN=2n1.
Answered by sma3l2996 last updated on 07/Aug/18
S_n =Σ_(k=1) ^(2n−1) (−1)^(k−1) k^3   =1−2^3 +3^3 −4^3 +...+(2n−1)^3   =(1+3^3 +5^3 +...+(2n−1)^3 )−(2^3 +4^3 +6^3 +...+(2n−2)^3 )  =[1+2^3 +3^3 +4^3 +...+(2n−1)^3 −(2^3 +4^3 +6^3 +...+(2n−2)^3 )]−2^3 (1^3 +2^3 +3^3 +...+(n−1)^3 )  =Σ_(k=1) ^(2n−1) k^3 −2^3 ×2Σ_(k=1) ^(n−1) k^3   =[(((2n−1)(2n−1+1))/2)]^2 −2^4 [(((n−1)(n−1+1))/2)]^2   note:  Σ_(k=1) ^n k^3 =[((n(n+1))/2)]^2   S_n =(((2n−1)^2 (2n)^2 )/2^2 )−2^4 (((n−1)^2 n^2 )/2^2 )  =n^2 ((2n−1)^2 −2^2 (n−1)^2 )  =n^2 (4n^2 −4n+1−4n^2 +8n−4)  S_n =n^2 (4n−3)
Sn=2n1k=1(1)k1k3=123+3343++(2n1)3=(1+33+53++(2n1)3)(23+43+63++(2n2)3)=[1+23+33+43++(2n1)3(23+43+63++(2n2)3)]23(13+23+33++(n1)3)=2n1k=1k323×2n1k=1k3=[(2n1)(2n1+1)2]224[(n1)(n1+1)2]2note:nk=1k3=[n(n+1)2]2Sn=(2n1)2(2n)22224(n1)2n222=n2((2n1)222(n1)2)=n2(4n24n+14n2+8n4)Sn=n2(4n3)

Leave a Reply

Your email address will not be published. Required fields are marked *