Evaluate-k-1-2n-1-1-k-1-k-3- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 41454 by Fawomath last updated on 07/Aug/18 Evaluate∑2n−1k=1(−1)k−1k3 Commented by maxmathsup by imad last updated on 07/Aug/18 letS(x)=∑k=0N(−1)kxkwehaveS′(x)=∑k=1N(−1)kkxk−1⇒xS′(x)=∑k=1n(−1)kkxk⇒(xS′(x))′=∑k=1N(−1)kk2xk−1⇒S′(x)+xS″(x)=∑k=1N(−1)kk2xk−1⇒xS′(x)+x2S″(x)=∑k=1N(−1)kk2xk⇒(xS′(x)+x2S″(x))′=∑k=1N(−1)kk3xk−1⇒S′(x)+xS″(x)+2xS″(x)+x2S(3)(x)=∑k=1N(−1)kk3xk−1⇒xS′(x)+3x2S(2)(x)+x3S(3)(x)=∑k=1N(−1)kk3xklettakex=1⇒∑k=1N(−1)kxk=S′(1)+3S(2)(1)+S(3)(1)butS(x)=∑k=0N(−x)k=1−(−x)N+11+x=1−(−1)N+1xN+11+x(x≠−1)=1+(−1)NxN+11+x⇒S′(x)=(N+1)(−1)NxN(1+x)−(1+(−1)NxN+1)(1+x)2=(N+1)(−1)NxN+(N+1)(−1)NxN+1−1−(−1)NxN+1(1+x)2=(N+1)(−1)NxN+N(−1)NxN+1−1(1+x)2⇒S′(1)=(N+1)(−1)N+N(−1)N4=(2N+1)(−1)N4alsowemustcalculateS(2)(1)andS(3)(1)andtakeN=2n−1…. Answered by sma3l2996 last updated on 07/Aug/18 Sn=∑2n−1k=1(−1)k−1k3=1−23+33−43+…+(2n−1)3=(1+33+53+…+(2n−1)3)−(23+43+63+…+(2n−2)3)=[1+23+33+43+…+(2n−1)3−(23+43+63+…+(2n−2)3)]−23(13+23+33+…+(n−1)3)=∑2n−1k=1k3−23×2∑n−1k=1k3=[(2n−1)(2n−1+1)2]2−24[(n−1)(n−1+1)2]2note:∑nk=1k3=[n(n+1)2]2Sn=(2n−1)2(2n)222−24(n−1)2n222=n2((2n−1)2−22(n−1)2)=n2(4n2−4n+1−4n2+8n−4)Sn=n2(4n−3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-41447Next Next post: Two-places-A-and-B-both-on-a-parallel-of-latitude-N-differs-in-longitudes-by-Show-that-the-shortest-distance-between-them-is-2-sin-1-cos-sin-2-360-2piR-Topic- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.