Menu Close

evaluate-lim-n-1-e-x-n-ln-x-dx-




Question Number 100215 by Rio Michael last updated on 25/Jun/20
evaluate lim_(n→∞) ∫_1 ^e x^n ln x dx
evaluatelimn1exnlnxdx
Commented by Dwaipayan Shikari last updated on 25/Jun/20
∞
Answered by Ar Brandon last updated on 25/Jun/20
Let I=∫_1 ^e x^n lnxdx  let  { ((u=lnx)),((dv=x^n dx)) :}⇒ { ((du=(1/x)dx)),((v=(x^(n+1) /(n+1)))) :}  ⇒I=[(x^(n+1) /(n+1))∙lnx]_1 ^e −(1/(n+1))∫_1 ^e x^n dx=(e^(n+1) /(n+1))−[(x^(n+1) /((n+1)^2 ))]_1 ^e   ⇒I=(e^(n+1) /(n+1))−(e^(n+1) /((n+1)^2 ))+(1/((n+1)^2 ))  lim_(n→∞) (I)=lim_(n→∞) {(e^(n+1) /1)−(e^(n+1) /(2(n+1)))}=lim_(n→∞) {e^(n+1) −(e^(n+1) /2)}                 =lim_(n→∞) {(e^(n+1) /2)}=+∞
LetI=1exnlnxdxlet{u=lnxdv=xndx{du=1xdxv=xn+1n+1I=[xn+1n+1lnx]1e1n+11exndx=en+1n+1[xn+1(n+1)2]1eI=en+1n+1en+1(n+1)2+1(n+1)2limn(I)=limn{en+11en+12(n+1)}=limn{en+1en+12}=limn{en+12}=+
Commented by DGmichael last updated on 25/Jun/20
�� LIATE
Commented by Ar Brandon last updated on 25/Jun/20
Ouais�� c'est ça.
Answered by mathmax by abdo last updated on 25/Jun/20
A_n =∫_1 ^e  x^n  lnx dx  changement lnx =t give A_n =∫_0 ^1  e^(nt)  t e^(t ) dt  =∫_0 ^1  t e^((n+1)t)  dt  =[(1/(n+1))t e^((n+1)t) ]_0 ^1  −∫_0 ^1 (1/(n+1))e^((n+1)t)  dt  =(e^(n+1) /(n+1))    −(1/((n+1)^2 ))[e^()n+1)t) ]_0 ^(1 )  =(e^(n+1) /(n+1))−(1/((n+1)^2 ))(e^(n+1) −1)  =(e^(n+1) /(n+1))−(e^(n+1) /((n+1)^2 )) +(1/((n+1)^2 )) =(((n+1)e^(n+1) −e^(n+1)  )/((n+1)^2 )) +(1/((n+1)^2 )) =((ne^(n+1) )/((n+1)^2 ))+(1/((n+1)^2 )) ⇒  lim_(n→+∞)  A_n  =lim_(n→+∞)  ((ne^(n+1) )/((n+1)^2 )) =+∞
An=1exnlnxdxchangementlnx=tgiveAn=01enttetdt=01te(n+1)tdt=[1n+1te(n+1)t]01011n+1e(n+1)tdt=en+1n+11(n+1)2[e)n+1)t]01=en+1n+11(n+1)2(en+11)=en+1n+1en+1(n+1)2+1(n+1)2=(n+1)en+1en+1(n+1)2+1(n+1)2=nen+1(n+1)2+1(n+1)2limn+An=limn+nen+1(n+1)2=+

Leave a Reply

Your email address will not be published. Required fields are marked *