Menu Close

Evaluate-lim-n-e-n-k-0-n-n-k-k-




Question Number 89092 by 174 last updated on 15/Apr/20
Evaluate : lim_(n→∞)  e^(−n)  Σ_(k=0) ^n (n^k /(k!))
$${Evaluate}\::\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−{n}} \:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}^{{k}} }{{k}!} \\ $$
Commented by abdomathmax last updated on 15/Apr/20
we have  e^n  =Σ_(k=0) ^∞  (n^k /(k!)) =Σ_(k=0) ^n  (n^k /(k!)) +Σ_(k=n+1) ^∞  (n^k /(k!))  =Σ_(k=0) ^n  (n^k /(k!)) +R_n     R_n is the rest and lim_(n→+∞) Rn=0  ⇒1 =e^(−n)  Σ_(k=0) ^n  (n^k /(k!)) +e^(−n)  R_n     ∀n  we passe to limit  we get lim_(n→+∞)  e^(−n)  Σ_(k=0) ^n  (n^k /(k!)) =1
$${we}\:{have}\:\:{e}^{{n}} \:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{n}^{{k}} }{{k}!}\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{n}^{{k}} }{{k}!}\:+\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\frac{{n}^{{k}} }{{k}!} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{n}^{{k}} }{{k}!}\:+{R}_{{n}} \:\:\:\:{R}_{{n}} {is}\:{the}\:{rest}\:{and}\:{lim}_{{n}\rightarrow+\infty} {Rn}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}\:={e}^{−{n}} \:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{n}^{{k}} }{{k}!}\:+{e}^{−{n}} \:{R}_{{n}} \:\:\:\:\forall{n}\:\:{we}\:{passe}\:{to}\:{limit} \\ $$$${we}\:{get}\:{lim}_{{n}\rightarrow+\infty} \:{e}^{−{n}} \:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{n}^{{k}} }{{k}!}\:=\mathrm{1} \\ $$
Commented by 174 last updated on 15/Apr/20
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *