Menu Close

evaluate-lim-n-k-1-n-1-n-k-2-




Question Number 112492 by mathdave last updated on 08/Sep/20
evaluate  lim_(n→∞) Σ_(k=1) ^n (1/(n+k^2 ))
$${evaluate} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}+{k}^{\mathrm{2}} } \\ $$
Answered by Ar Brandon last updated on 08/Sep/20
1≤k≤n⇒1≤k^2 ≤n^2 ⇒n+1≤n+k^2 ≤n+n^2   ⇒(1/(n+n^2 ))≤(1/(n+k^2 ))≤(1/(n+1))⇒lim_(n→∞) Σ_(k=1) ^n (1/(n+n^2 ))≤lim_(n→∞) A_n ≤lim_(n→∞) Σ_(k=1) ^n (1/(n+1))  ⇒lim_(n→∞) (n/(n+n^2 ))≤lim_(n→∞) A_n ≤lim_(n→∞) (n/(n+1))⇒0≤lim_(n→∞) ≤1  ...
$$\mathrm{1}\leqslant\mathrm{k}\leqslant\mathrm{n}\Rightarrow\mathrm{1}\leqslant\mathrm{k}^{\mathrm{2}} \leqslant\mathrm{n}^{\mathrm{2}} \Rightarrow\mathrm{n}+\mathrm{1}\leqslant\mathrm{n}+\mathrm{k}^{\mathrm{2}} \leqslant\mathrm{n}+\mathrm{n}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}A}_{\mathrm{n}} \leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}} \\ $$$$\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}}{\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}A}_{\mathrm{n}} \leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}}\Rightarrow\mathrm{0}\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\leqslant\mathrm{1} \\ $$$$… \\ $$
Commented by mathdave last updated on 08/Sep/20
nice attempt
$${nice}\:{attempt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *