Menu Close

Evaluate-lim-n-n-n-2-1-2-n-n-2-2-2-n-n-2-n-2-




Question Number 34367 by rahul 19 last updated on 05/May/18
Evaluate   lim_(n→∞) ((n/(n^2 +1^2 ))+(n/(n^2 +2^2 ))+.....+(n/(n^2 +n^2 ))).
Evaluatelimn(nn2+12+nn2+22+..+nn2+n2).
Answered by tanmay.chaudhury50@gmail.com last updated on 05/May/18
=rth term =((n/(n^2 +r^2 )))  =lim n→∞Σ_(r=o) ^∞ (((1/n)/(1+(r/n)^2  )))  =lim_(n→∞)  Σ_(r=0) ^∞ (1/n)((1/(1+(r/n)^2 ))  =∫^1  _0 (dx^ /(1+x^2 ))  =∣tan^(−1) x∣_0 ^1   =tan^(−1) 1−tan^(−1) 0  =Π/4
=rthterm=(nn2+r2)=limnr=o(1n1+(r/n)2)=limnr=01n(11+(r/n)2=10dx1+x2=∣tan1x10=tan11tan10=Π/4
Commented by rahul 19 last updated on 05/May/18
how you write the 3rd step  ( integration one ) ?
howyouwritethe3rdstep(integrationone)?
Commented by math khazana by abdo last updated on 05/May/18
its a Rieman sum sir Rahul...
itsaRiemansumsirRahul
Commented by tanmay.chaudhury50@gmail.com last updated on 05/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/May/18
Commented by rahul 19 last updated on 05/May/18
Thank you sir.
Thankyousir.
Commented by abdo mathsup 649 cc last updated on 05/May/18
let take  S_n =[ (1+(1/n^2 ))(1+(2^2 /n^2 ))....(1+(n^2 /n^2 ))]^(1/n)   ln(S_n ) =(1/n)ln( Π_(k=1) ^n (1+(k^2 /n^2 )))  =(1/n) Σ_(k=1) ^n  ln(1+((k/n))^2 )→∫_0 ^1 ln(1+x^2 )dx  ∫_0 ^1   ln(1+x^2 )dx = [x ln(1+x^2 )]_0 ^1  −∫_0 ^1  x ((2x)/(1+x^2 ))dx  =ln(2)  −2 ∫_0 ^1   ((x^2 +1−1)/(1+x^2 ))dx  =ln(2) −2  +2 ∫_0 ^1     (dx/(1+x^2 ))  =ln(2) −2 + +2 (π/4) = ln(2) +(π/2) −2 so  lim_(n→+∞)   S_n  = ln(2)+ (π/2) −2 .
lettakeSn=[(1+1n2)(1+22n2).(1+n2n2)]1nln(Sn)=1nln(k=1n(1+k2n2))=1nk=1nln(1+(kn)2)01ln(1+x2)dx01ln(1+x2)dx=[xln(1+x2)]0101x2x1+x2dx=ln(2)201x2+111+x2dx=ln(2)2+201dx1+x2=ln(2)2++2π4=ln(2)+π22solimn+Sn=ln(2)+π22.

Leave a Reply

Your email address will not be published. Required fields are marked *