Menu Close

Evaluate-lim-x-0-x-1-x-x-1-x-2-x-x-1-1-




Question Number 173729 by a.lgnaoui last updated on 17/Jul/22
Evaluate  lim_(x→0) ((x−(1/( (√x)−x))+1)/(x^2 +((√x)/( (√x)−1))−1))
Evaluatelimx0x1xx+1x2+xx11
Answered by blackmamba last updated on 17/Jul/22
  L = lim_(x→0)  (((x−(1/( (√x)−x)) −1)/(x^2 +((√x)/( (√x)−1))−1)))     = lim_(x→0) ((((x−1)+(1/( (√x)((√x)−1))))/((x−1)(x+1)+((√x)/( (√x)−1))))).((((√x)−1)/( (√x)−1)))    = lim_(x→0) (((((√x)−1)^2 ((√x)+1)+(1/( (√x))))/(((√x)−1)^2 ((√x)+1)(x+1)+(√x))))   = ∞
L=limx0(x1xx1x2+xx11)=limx0((x1)+1x(x1)(x1)(x+1)+xx1).(x1x1)=limx0((x1)2(x+1)+1x(x1)2(x+1)(x+1)+x)=
Answered by greougoury555 last updated on 17/Jul/22
 = lim_(x→0)  ((((x+1)+(1/( (√x) ((√x)−1))))/((x−1)(x+1)+((√x)/( (√x)−1)))) )   [ let (1/( (√x)−1)) = t ; (√x) = ((1+t)/t) ]   = lim_(t→−1)  ((((((1+t)/t))^2 +1+(t^2 /(1+t)))/([(((1+t)/t))^2 −1][(((1+t)/t))^2 +1]+1+t)))  =−∞
=limx0((x+1)+1x(x1)(x1)(x+1)+xx1)[let1x1=t;x=1+tt]=limt1((1+tt)2+1+t21+t[(1+tt)21][(1+tt)2+1]+1+t)=
Commented by a.lgnaoui last updated on 17/Jul/22
thanks for you
thanksforyou

Leave a Reply

Your email address will not be published. Required fields are marked *