Question Number 85127 by Rio Michael last updated on 19/Mar/20

Commented by john santu last updated on 19/Mar/20

Commented by MJS last updated on 19/Mar/20

Commented by jagoll last updated on 19/Mar/20

Commented by MJS last updated on 19/Mar/20

Answered by MJS last updated on 19/Mar/20
![L=lim_(x→0) (√x)ln sin x =lim_(x→0) ((xln sin x)/( (√x))) = =lim_(x→0) (((d/dx)[xln sin x])/((d/dx)[(√x)])) = lim_(x→0) (((x/(tan x))+ln sin x)/(1/(2(√x)))) = =2lim_(x→0) (((√x^3 )/(tan x))+(√x)ln sin x) ⇒ L=2L+2lim_(x→0) ((√x^3 )/(tan x)) ⇒ L=−2lim_(x→0) ((√x^3 )/(tan x)) =−2lim_(x→0) (((d/dx)[(√x^3 )])/((d/dx)[tan x])) = =−2lim_(x→0) (((3/2)(√x))/(1/(cos^2 x))) =−3lim_(x→0) (√x)cos^2 x =0](https://www.tinkutara.com/question/Q85147.png)
Commented by Rio Michael last updated on 19/Mar/20
