Menu Close

evaluate-lim-x-0-x-ln-sin-x-




Question Number 85127 by Rio Michael last updated on 19/Mar/20
evaluate:   lim_(x→0)  (√x) ln(sin x)
evaluate:limx0xln(sinx)
Commented by john santu last updated on 19/Mar/20
yes. i forgot ln in this question
yes.iforgotlninthisquestion
Commented by MJS last updated on 19/Mar/20
there′s something wrong
theressomethingwrong
Commented by jagoll last updated on 19/Mar/20
in which parts is wrong ?
inwhichpartsiswrong?
Commented by MJS last updated on 19/Mar/20
(1)  lim_(x→0)  ln (sin x)^(√x)  ≠lim_(x→0)  (1+(sin x −1))^(√x)   (2) how did you get the 3^(rd)  line from the 2^(nd)  one?       lim_(x→0)  ((1+u)^(1/u) )^(uv) ⇒^?  e^(lim_(x→0)  uv)
(1)limx0ln(sinx)xlimx0(1+(sinx1))x(2)howdidyougetthe3rdlinefromthe2ndone?limx0((1+u)1u)uv?elimx0uv
Answered by MJS last updated on 19/Mar/20
L=lim_(x→0)  (√x)ln sin x =lim_(x→0)  ((xln sin x)/( (√x))) =  =lim_(x→0)  (((d/dx)[xln sin x])/((d/dx)[(√x)])) = lim_(x→0)  (((x/(tan x))+ln sin x)/(1/(2(√x)))) =  =2lim_(x→0)  (((√x^3 )/(tan x))+(√x)ln sin x)  ⇒  L=2L+2lim_(x→0)  ((√x^3 )/(tan x))  ⇒  L=−2lim_(x→0)  ((√x^3 )/(tan x)) =−2lim_(x→0)  (((d/dx)[(√x^3 )])/((d/dx)[tan x])) =  =−2lim_(x→0)  (((3/2)(√x))/(1/(cos^2  x))) =−3lim_(x→0)  (√x)cos^2  x =0
L=limx0xlnsinx=limx0xlnsinxx==limx0ddx[xlnsinx]ddx[x]=limx0xtanx+lnsinx12x==2limx0(x3tanx+xlnsinx)L=2L+2limx0x3tanxL=2limx0x3tanx=2limx0ddx[x3]ddx[tanx]==2limx032x1cos2x=3limx0xcos2x=0
Commented by Rio Michael last updated on 19/Mar/20
thanks y′all
thanksyall

Leave a Reply

Your email address will not be published. Required fields are marked *