Menu Close

Evaluate-lim-x-0-x-m-log-x-n-m-n-N-




Question Number 34464 by rahul 19 last updated on 06/May/18
Evaluate   lim_(x→0^+ )  x^(m ) (log x )^n  , m,n ∈ N
Evaluatelimx0+xm(logx)n,m,nN
Answered by MJS last updated on 07/May/18
x^m (ln x)^n =(x^(m/n) ln x)^n =(((ln x)/x^(−(m/n)) ))^n   l′Hoptial:  lim_(x→0^+ ) ((ln x)/x^(−(m/n)) )=lim_(x→0^+ ) ((1/x)/(−(m/n)x^(−(m/n)−1) ))=lim_(x→0^+ ) −(n/m)x^(m/n) =0 ⇒  ⇒ lim_(x→0^+ ) x^m (ln x)^n =0
xm(lnx)n=(xmnlnx)n=(lnxxmn)nlHoptial:limx0+lnxxmn=limx0+1xmnxmn1=limx0+nmxmn=0limx0+xm(lnx)n=0
Commented by rahul 19 last updated on 07/May/18
Is this  method correct ?  You are applying L−hopital at  ((ln x)/x^((−m)/n) ) but the original expression to  which we should apply is  (((ln x)/x^((−m)/n) ))^n    !!!!
Isthismethodcorrect?YouareapplyingLhopitalatlnxxmnbuttheoriginalexpressiontowhichweshouldapplyis(lnxxmn)n!!!!
Commented by MJS last updated on 07/May/18
I think it′s correct because if the limit of  f(x) is l the limit of (f(x))^n  with n∈N should  be l^n ...
Ithinkitscorrectbecauseifthelimitoff(x)islthelimitof(f(x))nwithnNshouldbeln
Commented by rahul 19 last updated on 07/May/18
Abdo, Tanmay sir,can anyone pls  confirm the above statement .  (Is it always true?)  I have heard that :  lim_(x→0) f(g(x))=f(lim_(x→0) g(x)) only when  f is continous at that point.
Abdo,Tanmaysir,cananyoneplsconfirmtheabovestatement.(Isitalwaystrue?)Ihaveheardthat:limx0f(g(x))=f(limx0g(x))onlywhenfiscontinousatthatpoint.
Commented by math khazana by abdo last updated on 08/May/18
yes sir rahul f must be continue to aplly this   result...
yessirrahulfmustbecontinuetoapllythisresult

Leave a Reply

Your email address will not be published. Required fields are marked *