Menu Close

evaluate-lim-x-3-sinx-2x-1-sinx-x-2-1-




Question Number 174407 by infinityaction last updated on 31/Jul/22
 evaluate     lim_(x→−∞)  ((3^(sinx ) +2x +1)/(sinx−(√(x^2 +1)) ))
evaluatelimx3sinx+2x+1sinxx2+1
Answered by CElcedricjunior last updated on 31/Jul/22
lim_(x→−∞) ((3^(sinx) +2x+1)/(sinx−(√(x^2 +1))))  or ∀x∈R −1≤sinx≤1  ⇔(1/3)≤3^(sinx) ≤3  ⇔(1/3)+2x+1≤3^(sinx) +2x+1≤4+2x  −1≤sinx≤1  −1−(√(x^2 +1))≤sinx−(√(1+x^2 ))≤1−(√(1+x^2 ))  ⇔(((4/3)+2x)/(−1−(√(1+x^2 ))))≤((3^(sinx) +2x+1)/(sinx−(√(1+x^2 ))))≤((4+2x)/(1−(√(1+x^2 ))))  lim_(x→−∞) (((4/3)+2x)/(−1−(√(1+x^2 ))))=lim_(x→−∞) (((4/3)+2x)/(−1−∣x∣(√(1+(1/x^2 )))))  =lim_(x→−∞) ((x((4/(3x))+2))/(x(−(1/x)+(√(1+(1/x^2 )))))) cas qd: { ((x−>−∞)),((∣x∣=−x)) :}  =2  lim_(x→−∞) ((4+2x)/(1−(√(1+x^2 ))))=2 en procedant de  la meme maniere  d′ou^� lim_(x→−∞) ((3^(sinx) +2x+1)/(sinx−(√(1+x^2 ))))=2  D ′apre^� s le the^� ore^� me des gendarmes    .........le ce^� le^� bre cedric junior...........
limx3sinx+2x+1sinxx2+1orxR1sinx1133sinx313+2x+13sinx+2x+14+2x1sinx11x2+1sinx1+x211+x243+2x11+x23sinx+2x+1sinx1+x24+2x11+x2limx43+2x11+x2=limx43+2x1x1+1x2=limxx(43x+2)x(1x+1+1x2)casqd:{x>x∣=x=2limx4+2x11+x2=2enprocedantdelamememanieredou`limx3sinx+2x+1sinx1+x2=2Dapres`letheor´eme`desgendarmeslecel´ebre`cedricjunior..
Commented by infinityaction last updated on 01/Aug/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *