Menu Close

evaluate-lim-x-f-x-and-lim-x-f-x-for-f-x-x-x-2-1-




Question Number 120211 by bemath last updated on 30/Oct/20
 evaluate lim_(x→∞) f(x) and lim_(x→−∞) f(x)  for f(x)=(x/( (√(x^2 +1)))).
evaluatelimxf(x)andlimxf(x)forf(x)=xx2+1.
Answered by Ar Brandon last updated on 30/Oct/20
f(x)=(x/( ∣x∣(√(1+(1/x^2 )))))=((sgn(x))/( (√(1+(1/x^2 )))))  lim_(x→∞) f(x)=1, lim_(x→−∞) f(x)=−1
f(x)=xx1+1x2=sgn(x)1+1x2limxf(x)=1,limxf(x)=1
Commented by Dwaipayan Shikari last updated on 30/Oct/20
বাংলা শিখছো?
Commented by Ar Brandon last updated on 30/Oct/20
না, আমি কিছু মজা করছি������
Answered by benjo_mathlover last updated on 30/Oct/20
Rewrite the expression for  f(x) as follows : f(x)=(x/( (√(x^2 (1+(1/x^2 ))))))  f(x) = (x/( (√x^2 ) (√(1+(1/x^2 ))))) =(x/(∣x∣(√(1+(1/x^2 )))))  f(x)= ((sgn x)/( (√(1+(1/x^2 ))))) ; [ where sgn x = (x/(∣x∣))= { ((1, if x>0)),((−1, if x<0)) :}  The factor (√(1+(1/x^2 ))) approaches 1 as x→∞ or −∞  therefore  { ((lim_(x→∞) f(x)=1)),((lim_(x→−∞) f(x)=−1)) :}
Rewritetheexpressionforf(x)asfollows:f(x)=xx2(1+1x2)f(x)=xx21+1x2=xx1+1x2f(x)=sgnx1+1x2;[wheresgnx=xx={1,ifx>01,ifx<0Thefactor1+(1/x2)approaches1asxortherefore{limxf(x)=1limxf(x)=1
Answered by mathmax by abdo last updated on 30/Oct/20
lim_(x→+∞)  f(x) =lim_(x→+∞)   (x/(x(√(1+(1/x^2 ))))) =lim_(x→+∞) (1/( (√(1+(1/x^2 )))))=1  lim_(x→−∞)    f(x) =lim_(x→−∞)   (x/(−x(√(1+(1/x^2 ))))) =−lim_(x→−∞)  (1/( (√(1+(1/x^2 )))))=−1  (look that f(x)=(x/(∣x∣(√(1+(1/x^2 ))))) for x≠0)
limx+f(x)=limx+xx1+1x2=limx+11+1x2=1limxf(x)=limxxx1+1x2=limx11+1x2=1(lookthatf(x)=xx1+1x2forx0)

Leave a Reply

Your email address will not be published. Required fields are marked *