Menu Close

Evaluate-lim-x-pi-6-3-sin-x-cos-x-x-pi-6-




Question Number 184796 by Spillover last updated on 11/Jan/23
Evaluate   lim_(x→(π/6)) (((√3)sin x−cos x)/(x−(π/6)))
Evaluatelimxπ63sinxcosxxπ6
Commented by MJS_new last updated on 11/Jan/23
2
2
Commented by MJS_new last updated on 11/Jan/23
these are all easy with l′Ho^� pital
thesearealleasywithlHopital^
Answered by aba last updated on 12/Jan/23
let t=x−(π/6) ⇒ x=t+(π/6)  lim_(x→(π/6)) (((√3)sin(x)−cos(x))/(x−(π/6)))=lim_(t→0 ) (((√3)sin(t+(π/6))−cos(t+(π/6)))/t)                                                 =lim_(t→0) (((√3)(sin(t)cos((π/6))+cos(t)sin((π/6)))−(cos(t)cos((π/6))−sin(t)sin((π/6))))/t)                                                 =lim_(t→0) (((√3)((√3)sin(t)+cos(t))−((√3)cos(t)−sin(t)))/(2t))                                                 =lim_(t→0) ((3sin(t)+sin(t)+(√3)sin(t)−(√3)cos(t))/(2t))                                                 =lim_(t→0) ((4sin(t))/(2t))                                                 =2
lett=xπ6x=t+π6limxπ63sin(x)cos(x)xπ6=limt03sin(t+π6)cos(t+π6)t=limt03(sin(t)cos(π6)+cos(t)sin(π6))(cos(t)cos(π6)sin(t)sin(π6))t=limt03(3sin(t)+cos(t))(3cos(t)sin(t))2t=limt03sin(t)+sin(t)+3sin(t)3cos(t)2t=limt04sin(t)2t=2

Leave a Reply

Your email address will not be published. Required fields are marked *