Menu Close

evaluate-lim-x-pi-api-x-x-




Question Number 33865 by 33 last updated on 26/Apr/18
evaluate   lim_(x→∞)    π (((aπ)^x )/(x!))
evaluatelimxπ(aπ)xx!
Commented by abdo imad last updated on 26/Apr/18
we have for x ∈V(+∞)  x! ∼ x^x e^(−x) (√(2πx))  (stirling formula generalised)  ⇒ A(x)=((π (aπ)^x )/(x!)) ∼ ((π(aπ)^x )/(x^x  e^(−x) (√(2πx)))) =π e^x (ax)^x  x^(−x−(1/2)) .(1/( (√(2π))))  =((√π)/2)  e^x  a^x  x^(−(1/2))   we must have a>0 and a≠(1/π) ⇒_   A(x) ∼ ((√π)/2) e^(xln(ae)) e^(−(1/2)ln(x)) =((√π)/2) e^(xlna +x−(1/2)ln(x)) ⇒  A(x)∼((√π)/2) e^(x(lna +1−(1/2)((lnx)/x))) →+∞(x→+∞)
wehaveforxV(+)x!xxex2πx(stirlingformulageneralised)A(x)=π(aπ)xx!π(aπ)xxxex2πx=πex(ax)xxx12.12π=π2exaxx12wemusthavea>0anda1πA(x)π2exln(ae)e12ln(x)=π2exlna+x12ln(x)A(x)π2ex(lna+112lnxx)+(x+)
Commented by abdo imad last updated on 26/Apr/18
lim A(x)=+∞ if ln(a)+1>0 ⇔a> (1/e)  if 0<a<e ln(a)+1<0 ⇒ lim_(x→+∞) A(x)=0
limA(x)=+ifln(a)+1>0a>1eif0<a<eln(a)+1<0limx+A(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *