Menu Close

evaluate-ln-1-




Question Number 41198 by mondodotto@gmail.com last updated on 03/Aug/18
evaluate ln(−1)
evaluateln(1)
Commented by math khazana by abdo last updated on 03/Aug/18
we  have  −1 =e^(i(2k+1)π)      ∀k∈Z ⇒  ln(−1)=i(2k+1)π   but we take  ln(−1)=iπ  for pricipal determination of the complex  logarithme.
wehave1=ei(2k+1)πkZln(1)=i(2k+1)πbutwetakeln(1)=iπforpricipaldeterminationofthecomplexlogarithme.
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
Answered by MJS last updated on 03/Aug/18
e^(θi) =cos θ +i×sin θ  cos θ =−1  θ=(2n−1)π; n∈Z  ⇒ ln(−1)=(2n−1)π; n∈Z
eθi=cosθ+i×sinθcosθ=1θ=(2n1)π;nZln(1)=(2n1)π;nZ
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
ln(−x)=ln(x)+iΠ  ln(−1)=ln(1)+iΠ=iΠ  LOG(A+iB)  and ln(A+iB)   Log(A+iB)=ln(A+iB)+2nΠi                  =(1/2)ln(A^2 +B^2 )+itan^(−1) ((B/A))+2nΠi
ln(x)=ln(x)+iΠln(1)=ln(1)+iΠ=iΠLOG(A+iB)andln(A+iB)Log(A+iB)=ln(A+iB)+2nΠi=12ln(A2+B2)+itan1(BA)+2nΠi

Leave a Reply

Your email address will not be published. Required fields are marked *