Evaluate-n-1-sin-n-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 121498 by Lordose last updated on 08/Nov/20 Evaluate∑∞n=1sin(n)n Answered by Bird last updated on 09/Nov/20 letfindS(x)=∑n=1∞sin(nx)ndxS(x)=Im(∑n=1∞einxn)and∑n=1∞einxn=∑n=1∞(eix)nn=−ln(1−eix)=−ln(1−cosx−isinx)=−ln(2sin2(x2)−2isin(x2)cos(x2))=−ln(−2isin(x2)eix2)=−ln(−2)−ln(i)−ln(sin(x2))−ix2=−ln(2)−iπ−iπ2−ix2−ln(sin(x2))=−ln2−ln(sin(x2))−ix2−3iπ2⇒Σsin(nx)n=−x+3π2x=1⇒Σsin(n)n=−3π+12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-121499Next Next post: Question-55967 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.