Menu Close

Evaluate-n-1-sin-n-n-




Question Number 121498 by Lordose last updated on 08/Nov/20
  Evaluate  Σ_(n=1) ^∞ ((sin(n))/n)
Evaluaten=1sin(n)n
Answered by Bird last updated on 09/Nov/20
let find S(x) =Σ_(n=1) ^(∞ )  ((sin(nx))/n)dx  S(x)=Im(Σ_(n=1) ^∞  (e^(inx) /n)) and  Σ_(n=1) ^(∞ )  (e^(inx) /n) =Σ_(n=1) ^(∞ )  (((e^(ix) )^n )/n)  =−ln(1−e^(ix) )  =−ln(1−cosx−isinx )  =−ln(2sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =−ln(−2isin((x/2))e^((ix)/2) )  =−ln(−2)−ln(i)−ln(sin((x/2)))−((ix)/2)  =−ln(2)−iπ−((iπ)/2)−((ix)/2)−ln(sin((x/2)))  =−ln2−ln(sin((x/2)))−((ix)/2)−((3iπ)/2)  ⇒Σ ((sin(nx))/n) =−((x+3π)/2)  x=1 ⇒ Σ  ((sin(n))/n) =−((3π+1)/2)
letfindS(x)=n=1sin(nx)ndxS(x)=Im(n=1einxn)andn=1einxn=n=1(eix)nn=ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2isin(x2)eix2)=ln(2)ln(i)ln(sin(x2))ix2=ln(2)iπiπ2ix2ln(sin(x2))=ln2ln(sin(x2))ix23iπ2Σsin(nx)n=x+3π2x=1Σsin(n)n=3π+12

Leave a Reply

Your email address will not be published. Required fields are marked *