Menu Close

Evaluate-pi-pi-x-9-cos-x-dx-




Question Number 101330 by 175 last updated on 01/Jul/20
Evaluate.  ∫_(−π) ^π x^9 cos x dx
Evaluate.ππx9cosxdx
Commented by mr W last updated on 01/Jul/20
this is an odd function, since  f(−x)=−f(x)    for odd function:  ∫_(−a) ^a f(x)dx=0  ⇒∫_(−π) ^π x^9 cos x dx=0
thisisanoddfunction,sincef(x)=f(x)foroddfunction:aaf(x)dx=0ππx9cosxdx=0
Commented by ajfour last updated on 02/Jul/20
well what if  I= ∫_0 ^(  π) x^9 cos x ?
wellwhatifI=0πx9cosx?
Commented by mr W last updated on 02/Jul/20
I_(2n+1) =−(2n+1)[π^(2n) +(2n)I_(2n−1) ]  ....
I2n+1=(2n+1)[π2n+(2n)I2n1].
Commented by ajfour last updated on 02/Jul/20
thanks Sir!
thanksSir!
Commented by 1549442205 last updated on 02/Jul/20
F_n =∫x^n dsinx=x^n sinx−∫nx^(n−1) sinxdx  =x^n sinx+n∫x^(n−1) dcosx=x^n sinx+nx^(n−1) cosx  −n(n−1)∫x^(n−2) cosx=x^n sinx+nx^(n−1) cosx−n(n−1)F_(n−2)   Hence,I_n =∫_0 ^π x^n cosxdx=x^n sinx∣^π _0 +nx^(n−1) cosx∣_0 ^π −nI_(n−1)   I_n =−n𝛑^(n−1) −n(n−1)I_(n−2)
Fn=xndsinx=xnsinxnxn1sinxdx=xnsinx+nxn1dcosx=xnsinx+nxn1cosxn(n1)xn2cosx=xnsinx+nxn1cosxn(n1)Fn2Hence,In=0πxncosxdx=xnsinx0π+nxn1cosx0πnIn1In=nπn1n(n1)In2

Leave a Reply

Your email address will not be published. Required fields are marked *