Menu Close

Evaluate-r-0-x-r-x-dx-




Question Number 27400 by Tinkutara last updated on 06/Jan/18
Evaluate ∫_r ^0 (√(x/(r−x))) dx
Evaluate0rxrxdx
Commented by Tinkutara last updated on 07/Jan/18
But this integral was used in a Physics  question where its value can′t be  negative. It should be only ((πr)/2). It is  used in question 27445.
ButthisintegralwasusedinaPhysicsquestionwhereitsvaluecantbenegative.Itshouldbeonlyπr2.Itisusedinquestion27445.
Commented by abdo imad last updated on 06/Jan/18
let do the ch.   (√(x/(r−x)))   =t⇔  (x/(r−x)) =t^2 ⇔x=(r−x)t^2   ⇔x+xt^2 =rt^2 ⇔ (1+t^2 )x=rt^2 ⇔x= ((rt^2 )/(1+t^2 ))    x=((r(1+t^2 −1))/(1+t^2 )) =r −(r/(1+t^2 ))⇔ (dx/dt)= ((2rt)/((1+t^2 )^2 ))  ∫_r ^0 (√(x/(r−x))) dx= ∫_∝ ^0 t((2rt)/((1+t^2 )^2 ))dt = −2r ∫_0 ^∞ (t^2 /((1+t^2 )^2 ))dt  but  ∫_0 ^∞ (t^2 /((1+t^2 )^2 ))dt= ∫_0 ^∞ (dt/(1+t^2 )) −∫_0 ^∞  (dt/((1+t^2 )^2 ))  =(π/2) −∫_0 ^∞ (dt/((1+t^2 )^2 )) and by residus theorem  ∫_0 ^∞ (dt/((1+t^2 )^2 ))=(1/2)∫_R  (dt/((1+t^2 )^2 ))=(1/2) 2iπ Res(f ,i)with  f(z)= (1/((1+z^2 )^2 ))= (1/((z−i)^2 (z+i)^2 )) and i is a double pole of f  Res(f,i)=lim_(z−>i)  (1/((2−1)!))((z−i)^2 f(z))^,   =lim_(z−>i) ((z+i)^(−2) )^, =lim_(z−>i) −2(z+i)^(−3)   = −2(2i)^(−3) =−2(1/((2i)^3 ))=(1/(4i))  ∫_0 ^∞ (dt/((1+t^2 )^2 ))=iπ (1/(4i))= (π/4)  ∫_r ^0 (√(  (x/(r−x)))) dx =−2r((π/2) −(π/4))=−2r (π/4) =((−rπ)/2) .
letdothech.xrx=txrx=t2x=(rx)t2x+xt2=rt2(1+t2)x=rt2x=rt21+t2x=r(1+t21)1+t2=rr1+t2dxdt=2rt(1+t2)2r0xrxdx=0t2rt(1+t2)2dt=2r0t2(1+t2)2dtbut0t2(1+t2)2dt=0dt1+t20dt(1+t2)2=π20dt(1+t2)2andbyresidustheorem0dt(1+t2)2=12Rdt(1+t2)2=122iπRes(f,i)withf(z)=1(1+z2)2=1(zi)2(z+i)2andiisadoublepoleoffRes(f,i)=limz>i1(21)!((zi)2f(z)),=limz>i((z+i)2),=limz>i2(z+i)3=2(2i)3=21(2i)3=14i0dt(1+t2)2=iπ14i=π4r0xrxdx=2r(π2π4)=2rπ4=rπ2.
Commented by mrW1 last updated on 07/Jan/18
the result above is correct.    ∫_r ^( 0) (√(...)) dx is negative  ∫_0 ^( r) (√(...)) dx is positive
theresultaboveiscorrect.r0dxisnegative0rdxispositive
Commented by abdo imad last updated on 07/Jan/18
we must have 0<x<r because of (√(...))⇒ ∫_r ^o (...)dx=−∫_0 ^r (...)≤0
wemusthave0<x<rbecauseofro()dx=0r()0
Answered by prakash jain last updated on 07/Jan/18
x=rcos^2  θ  dx=−2rcos θsin θdθ  ∫−2rcos θsin θ.((cos θ)/(sin θ))dθ  =−r∫2cos^2 θdθ  =−r∫(1+cos 2θ)dθ  =−r[θ+((sin 2θ)/2)]+C  =−r[cos^(−1) (√(x/r))+(√((x/r)×((r−x)/r)))]+C  =−r[cos^(−1) (√(x/r))+(1/r)(√(x(r−x)))]+C  taking limits  =−r[(π/2)−0]=−((πr)/2)
x=rcos2θdx=2rcosθsinθdθ2rcosθsinθ.cosθsinθdθ=r2cos2θdθ=r(1+cos2θ)dθ=r[θ+sin2θ2]+C=r[cos1xr+xr×rxr]+C=r[cos1xr+1rx(rx)]+Ctakinglimits=r[π20]=πr2
Commented by mrW1 last updated on 07/Jan/18
very nice way!
veryniceway!

Leave a Reply

Your email address will not be published. Required fields are marked *