Menu Close

Evaluate-R-xy-1-y-2-dx-dy-where-the-region-of-integration-is-the-positive-quadrant-of-the-circle-x-2-y-2-1-




Question Number 92805 by niroj last updated on 09/May/20
 Evaluate:   ∫_R ∫ ((xy)/( (√(1−y^2 )))) dx dy where the region of integration is the   positive quadrant of the circle x^2 +y^2 =1.
Evaluate:Rxy1y2dxdywheretheregionofintegrationisthepositivequadrantofthecirclex2+y2=1.
Answered by mr W last updated on 09/May/20
=∫_0 ^(π/2) ∫_0 ^1 ((r^2 cos θ sin θ)/( (√(1−r^2 sin^2  θ))))rdrdθ  =(1/2)∫_0 ^(π/2) cos θ sin θ(∫_0 ^1 (r^2 /( (√(1−r^2 sin^2  θ))))dr^2 )dθ  =(1/2)∫_0 ^(π/2) cos θ sin θ(∫_0 ^1 (u/( (√(1−u sin^2  θ))))du)dθ  =(1/2)∫_0 ^(π/2) cos θ sin θ(1/(sin^2  θ)){∫_0 ^1 [−(√(1−u sin^2  θ))+(1/( (√(1−u sin^2  θ))))]du}dθ  =(1/2)∫_0 ^(π/2) ((cos θ)/(sin θ)){[(2/(3 sin^2  θ))(1−u sin^2  θ)^(3/2) −(2/(sin^2  θ))(√(1−u sin^2  θ))]_0 ^1 }dθ  =(1/2)∫_0 ^(π/2) ((cos θ)/(sin θ)){[(2/(3 sin^2  θ))(1−sin^2  θ)^(3/2) −(2/(3 sin^2  θ))−(2/(sin^2  θ))(√(1−sin^2  θ))+(2/(sin^2  θ))]}dθ  =(1/3)∫_0 ^(π/2) ((cos θ)/(sin θ))[((cos^3  θ−3cos θ+2)/(sin^2  θ))]dθ  =(1/3)∫_(π/2) ^0 (((cos^3  θ−3cos θ+2)cos θ)/((1−cos^2  θ)^2 ))d(cos θ)  =(1/3)∫_0 ^1 (((t^3 −3t+2)t)/((1−t^2 )^2 ))dt  =(1/3)∫_0 ^1 (((t+2)t)/((t+1)^2 ))dt  =(1/3)∫_0 ^1 [1−(1/((t+1)^2 ))]dt  =(1/3)[t+(1/(t+1))]_0 ^1   =(1/3)(1+(1/2)−1)  =(1/6)
=0π201r2cosθsinθ1r2sin2θrdrdθ=120π2cosθsinθ(01r21r2sin2θdr2)dθ=120π2cosθsinθ(01u1usin2θdu)dθ=120π2cosθsinθ1sin2θ{01[1usin2θ+11usin2θ]du}dθ=120π2cosθsinθ{[23sin2θ(1usin2θ)322sin2θ1usin2θ]01}dθ=120π2cosθsinθ{[23sin2θ(1sin2θ)3223sin2θ2sin2θ1sin2θ+2sin2θ]}dθ=130π2cosθsinθ[cos3θ3cosθ+2sin2θ]dθ=13π20(cos3θ3cosθ+2)cosθ(1cos2θ)2d(cosθ)=1301(t33t+2)t(1t2)2dt=1301(t+2)t(t+1)2dt=1301[11(t+1)2]dt=13[t+1t+1]01=13(1+121)=16
Commented by niroj last updated on 09/May/20
Thank you Mr. W It is aspected result ��������
Commented by Ar Brandon last updated on 09/May/20
��

Leave a Reply

Your email address will not be published. Required fields are marked *