Question Number 92805 by niroj last updated on 09/May/20
$$\:\mathrm{Evaluate}: \\ $$$$\:\int_{\boldsymbol{\mathrm{R}}} \int\:\frac{\boldsymbol{\mathrm{xy}}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\:\boldsymbol{\mathrm{dx}}\:\boldsymbol{\mathrm{dy}}\:\mathrm{where}\:\mathrm{the}\:\mathrm{region}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{is}\:\mathrm{the} \\ $$$$\:\mathrm{positive}\:\mathrm{quadrant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{1}. \\ $$$$ \\ $$
Answered by mr W last updated on 09/May/20
$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{r}^{\mathrm{2}} \mathrm{cos}\:\theta\:\mathrm{sin}\:\theta}{\:\sqrt{\mathrm{1}−{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}}{rdrd}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\:\theta\:\mathrm{sin}\:\theta\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{r}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}}{dr}^{\mathrm{2}} \right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\:\theta\:\mathrm{sin}\:\theta\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}}{\:\sqrt{\mathrm{1}−{u}\:\mathrm{sin}^{\mathrm{2}} \:\theta}}{du}\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\:\theta\:\mathrm{sin}\:\theta\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\theta}\left\{\int_{\mathrm{0}} ^{\mathrm{1}} \left[−\sqrt{\mathrm{1}−{u}\:\mathrm{sin}^{\mathrm{2}} \:\theta}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{u}\:\mathrm{sin}^{\mathrm{2}} \:\theta}}\right]{du}\right\}{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}\left\{\left[\frac{\mathrm{2}}{\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}\left(\mathrm{1}−{u}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\mathrm{2}}{\mathrm{sin}^{\mathrm{2}} \:\theta}\sqrt{\mathrm{1}−{u}\:\mathrm{sin}^{\mathrm{2}} \:\theta}\right]_{\mathrm{0}} ^{\mathrm{1}} \right\}{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}\left\{\left[\frac{\mathrm{2}}{\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\mathrm{2}}{\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}−\frac{\mathrm{2}}{\mathrm{sin}^{\mathrm{2}} \:\theta}\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta}+\frac{\mathrm{2}}{\mathrm{sin}^{\mathrm{2}} \:\theta}\right]\right\}{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}\left[\frac{\mathrm{cos}^{\mathrm{3}} \:\theta−\mathrm{3cos}\:\theta+\mathrm{2}}{\mathrm{sin}^{\mathrm{2}} \:\theta}\right]{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{\left(\mathrm{cos}^{\mathrm{3}} \:\theta−\mathrm{3cos}\:\theta+\mathrm{2}\right)\mathrm{cos}\:\theta}{\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} }{d}\left(\mathrm{cos}\:\theta\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({t}^{\mathrm{3}} −\mathrm{3}{t}+\mathrm{2}\right){t}}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({t}+\mathrm{2}\right){t}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \left[\mathrm{1}−\frac{\mathrm{1}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\right]{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[{t}+\frac{\mathrm{1}}{{t}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by niroj last updated on 09/May/20
Thank you Mr. W It is aspected result
Commented by Ar Brandon last updated on 09/May/20