Question Number 92805 by niroj last updated on 09/May/20

Answered by mr W last updated on 09/May/20
![=∫_0 ^(π/2) ∫_0 ^1 ((r^2 cos θ sin θ)/( (√(1−r^2 sin^2 θ))))rdrdθ =(1/2)∫_0 ^(π/2) cos θ sin θ(∫_0 ^1 (r^2 /( (√(1−r^2 sin^2 θ))))dr^2 )dθ =(1/2)∫_0 ^(π/2) cos θ sin θ(∫_0 ^1 (u/( (√(1−u sin^2 θ))))du)dθ =(1/2)∫_0 ^(π/2) cos θ sin θ(1/(sin^2 θ)){∫_0 ^1 [−(√(1−u sin^2 θ))+(1/( (√(1−u sin^2 θ))))]du}dθ =(1/2)∫_0 ^(π/2) ((cos θ)/(sin θ)){[(2/(3 sin^2 θ))(1−u sin^2 θ)^(3/2) −(2/(sin^2 θ))(√(1−u sin^2 θ))]_0 ^1 }dθ =(1/2)∫_0 ^(π/2) ((cos θ)/(sin θ)){[(2/(3 sin^2 θ))(1−sin^2 θ)^(3/2) −(2/(3 sin^2 θ))−(2/(sin^2 θ))(√(1−sin^2 θ))+(2/(sin^2 θ))]}dθ =(1/3)∫_0 ^(π/2) ((cos θ)/(sin θ))[((cos^3 θ−3cos θ+2)/(sin^2 θ))]dθ =(1/3)∫_(π/2) ^0 (((cos^3 θ−3cos θ+2)cos θ)/((1−cos^2 θ)^2 ))d(cos θ) =(1/3)∫_0 ^1 (((t^3 −3t+2)t)/((1−t^2 )^2 ))dt =(1/3)∫_0 ^1 (((t+2)t)/((t+1)^2 ))dt =(1/3)∫_0 ^1 [1−(1/((t+1)^2 ))]dt =(1/3)[t+(1/(t+1))]_0 ^1 =(1/3)(1+(1/2)−1) =(1/6)](https://www.tinkutara.com/question/Q92811.png)
Commented by niroj last updated on 09/May/20
Thank you Mr. W It is aspected result ��������
Commented by Ar Brandon last updated on 09/May/20
��