Menu Close

Evaluate-s-F-n-dS-where-F-4xi-2y-2-j-z-2-k-and-S-is-the-surface-of-the-cylinder-bounded-by-x-2-y-2-4-z-0-and-z-3-




Question Number 100320 by bemath last updated on 26/Jun/20
Evaluate ∫∫_s  F^→ .n^�  dS where F^→ =4xi^�  −2y^2 j^�  +z^2 k^�    and S is the surface of the cylinder  bounded by x^2 +y^2 =4 ,z = 0 and z=3 .
EvaluatesF.n^dSwhereF=4xi^2y2j^+z2k^andSisthesurfaceofthecylinderboundedbyx2+y2=4,z=0andz=3.
Answered by smridha last updated on 26/Jun/20
∫∫_s F^→ .n^� ds=∫∫_R F^→ .n^� ((dxdz)/(∣n^� .j^� ∣)) [ take a projection on x−z plane]  our scaler point f^n  𝚽=x^2 +y^2 −4  so the unit normal of this surface  n^� =((▽𝚽)/(∣▽𝚽∣))=((xi^� +yj^� )/2) so ∣n^� .j^� ∣=(y/2)  and F^→ .n^� =((4x^2 −2y^3 )/2).  now our integral looks like  ∫_0 ^3 ∫_0 ^2 [((4x^2 )/y)−2y^2 ]dxdz  =∫_0 ^3 dz[∫_0 ^2 (((4x^2 )/( (√(4−x^2 ))))+(2x^2 −8))dx]  =3[−4.∫_0 ^2 {(√(4−x^2 ))  −(4/( (√(4−x^2 ))))}dx+((2/3)x^3 −8x)_0 ^2 ]  =3[−4(((x(√(4−x^2 )))/2)−2sin^(−1) ((x/2)))_0 ^2 +((16)/3)−16]  =3[4𝛑−((32)/3)]=[12𝛑−32]
sF.nds^=RF.n^dxdzn^.j^[takeaprojectiononxzplane]ourscalerpointfnΦ=x2+y24sotheunitnormalofthissurfacen^=ΦΦ=xi^+yj^2son^.j^∣=y2andF.n^=4x22y32.nowourintegrallookslike0302[4x2y2y2]dxdz=03dz[02(4x24x2+(2x28))dx]=3[4.02{4x244x2}dx+(23x38x)02]=3[4(x4x222sin1(x2))02+16316]=3[4π323]=[12π32]
Commented by bemath last updated on 26/Jun/20
great
great

Leave a Reply

Your email address will not be published. Required fields are marked *