Menu Close

evaluate-s-xz-y-2-dS-where-S-is-the-surface-described-by-x-2-y-2-16-0-z-3-




Question Number 104060 by bramlex last updated on 19/Jul/20
evaluate ∫∫_s (xz+y^2 )dS where  S is the surface described by x^2 +y^2 =16  , 0≤z≤3
evaluates(xz+y2)dSwhereSisthesurfacedescribedbyx2+y2=16,0z3
Answered by john santu last updated on 19/Jul/20
∫∫_s f(x,y,z)dS = ∫∫_R f(x,y,z)∣r_u ^→ ×r_v ^→ ∣dudv  ⇒x=4cos θ , y=4sin θ   r^→ (θ,z) =  (((4cos θ)),((4sin θ)),((      z)) ) ,0≤θ≤2π ,  0≤z≤3 . r_θ ^→ =  (((−4sin θ)),((   4 cos θ)),((       0)) )  r_z ^→  =  ((0),(0),(1) )  ; r_θ ^→ ×r_z ^→ =   determinant (((−4sin θ      4cos θ       0)),((        0                  0             1)))= (4cos θ  , 4sin θ ,0 ) ; ∣r_θ ^→ ×r_z ^→ ∣ = 4  S= ∫_0 ^(2π) ∫_0 ^3  [4z cos θ+16sin^2 θ] 4 dz dθ  S= ∫_0 ^(2π)  4{(2z^2  cos θ+16z.sin^2 θ)}_0 ^3  dθ  S= ∫_0 ^(2π)  4(18cos θ+48sin^2 θ )dθ  S = 24∫_0 ^(2π)  (3cos θ+8sin^2 θ) dθ  S = 24∫_0 ^(2π) (3cos θ + 4−4cos 2θ) dθ  S= 24 { 3sin θ+4θ−2sin 2θ} _0^(2π)   S = 192π . (JS ⊛)
sf(x,y,z)dS=Rf(x,y,z)ru×rvdudvx=4cosθ,y=4sinθr(θ,z)=(4cosθ4sinθz),0θ2π,0z3.rθ=(4sinθ4cosθ0)rz=(001);rθ×rz=|4sinθ4cosθ0001|=(4cosθ,4sinθ,0);rθ×rz=4S=2π030[4zcosθ+16sin2θ]4dzdθS=2π04{(2z2cosθ+16z.sin2θ)}03dθS=2π04(18cosθ+48sin2θ)dθS=242π0(3cosθ+8sin2θ)dθS=242π0(3cosθ+44cos2θ)dθS=24{3sinθ+4θ2sin2θ}02πS=192π.(JS)

Leave a Reply

Your email address will not be published. Required fields are marked *