Menu Close

evaluate-secxdx-




Question Number 38397 by Fawomath last updated on 25/Jun/18
evaluate  ∫secxdx
evaluatesecxdx
Commented by maxmathsup by imad last updated on 25/Jun/18
let I= ∫   (dx/(cosx))  changement tan((x/2))=t give  I=  ∫     (1/((1−t^2 )/(1+t^2 )))  ((2dt)/(1+t^2 )) =∫  ((2dt)/(1−t^2 )) = ∫ ( (1/(1+t)) +(1/(1−t)))dt  =ln∣((1+t)/(1−t))∣+c=ln∣ ((1+tan((x/2)))/(1−tan((x/2))))∣+c =ln∣tan((π/4)+(x/2))∣ +c
letI=dxcosxchangementtan(x2)=tgiveI=11t21+t22dt1+t2=2dt1t2=(11+t+11t)dt=ln1+t1t+c=ln1+tan(x2)1tan(x2)+c=lntan(π4+x2)+c
Commented by Cheyboy last updated on 25/Jun/18
∫ secx dx  ∫ (secx .((secx+tanx)/(secx+tanx)))dx  ∫ (((sec^2 x+secxtanx)/(secx+tanx))) dx  let u=secx+tanx  du=(secxtanx+sec^2 x)dx  ∫(1/u) du  ln∣u∣ +C  ln ∣secx+tanx∣+C
secxdx(secx.secx+tanxsecx+tanx)dx(sec2x+secxtanxsecx+tanx)dxletu=secx+tanxdu=(secxtanx+sec2x)dx1udulnu+Clnsecx+tanx+C
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
∫(dx/(cosx))  =∫((cosx)/(cos^2 x))dx  =∫((cosx)/(1−sin^2 x))dx  t=sinx  dt=cosxdx  ∫(dt/(1−t^2 ))=(1/2)∫((1+t+1−t)/((1+t)(1−t)))dt  (1/2)∫(dt/(1−t))+(1/2)∫(dt/(1+t))    =−(1/2)ln∣1−t∣+(1/2)ln∣1+t∣  =(1/2)ln∣((1+t)/(1−t))∣+c  =(1/2)ln∣((1+sinx)/(1−sinx))∣+c  =(1/2)ln∣(((1+sinx)^2 )/(1−sin^2 x))∣+c  =(1/2)ln∣(((1+sinx)^2 )/(cos^2 x))∣+c  =ln∣(1/(cosx))+((sinx)/(cosx))∣+c  =ln∣secx+tanx∣+c
dxcosx=cosxcos2xdx=cosx1sin2xdxt=sinxdt=cosxdxdt1t2=121+t+1t(1+t)(1t)dt12dt1t+12dt1+t=12ln1t+12ln1+t=12ln1+t1t+c=12ln1+sinx1sinx+c=12ln(1+sinx)21sin2x+c=12ln(1+sinx)2cos2x+c=ln1cosx+sinxcosx+c=lnsecx+tanx+c
Answered by malwaan last updated on 25/Jun/18
∫((secx(secx+tanx))/(secx+tanx))  =∫((sec^2 x+secx.tanx)/(tanx+secx))  =ln∣tanx+secx∣+c
secx(secx+tanx)secx+tanx=sec2x+secx.tanxtanx+secx=lntanx+secx+c

Leave a Reply

Your email address will not be published. Required fields are marked *