Menu Close

Evaluate-sin-x-x-dx-




Question Number 102701 by 175mohamed last updated on 10/Jul/20
Evaluate:  ∫((sin x)/x)dx
$${Evaluate}: \\ $$$$\int\frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$
Commented by  M±th+et+s last updated on 10/Jul/20
go to Q.98713 i solved this question
$${go}\:{to}\:{Q}.\mathrm{98713}\:{i}\:{solved}\:{this}\:{question} \\ $$
Answered by PRITHWISH SEN 2 last updated on 10/Jul/20
∫(1/x){x−(x^3 /(3!)) +(x^5 /(5!))−...}dx  = Σ_(r=1) ^∞ (−1)^(r+1) (x^(2r−1) /((2r−1).(2r−1)!))  please check.
$$\int\frac{\mathrm{1}}{\mathrm{x}}\left\{\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}\:+\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{5}!}−…\right\}\mathrm{dx} \\ $$$$=\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{r}+\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2r}−\mathrm{1}} }{\left(\mathrm{2r}−\mathrm{1}\right).\left(\mathrm{2r}−\mathrm{1}\right)!}\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$
Answered by mathmax by abdo last updated on 10/Jul/20
at form of serie  wehave sinx =Σ_(n=0) ^∞  (((−1)^n  x^(2n+1) )/((2n+1)!))  with radius r=+∞  ⇒((sinx)/x) =Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/((2n+1)!)) ⇒ ∫ ((sinx)/x)dx =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) ∫ x^(2n)  dx  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!(2n+1)))x^(2n+1)  +C
$$\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie}\:\:\mathrm{wehave}\:\mathrm{sinx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\:\mathrm{with}\:\mathrm{radius}\:\mathrm{r}=+\infty \\ $$$$\Rightarrow\frac{\mathrm{sinx}}{\mathrm{x}}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\Rightarrow\:\int\:\frac{\mathrm{sinx}}{\mathrm{x}}\mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\int\:\mathrm{x}^{\mathrm{2n}} \:\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!\left(\mathrm{2n}+\mathrm{1}\right)}\mathrm{x}^{\mathrm{2n}+\mathrm{1}} \:+\mathrm{C} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *