Evaluate-sinx-1-sin-2-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 97782 by 175 last updated on 09/Jun/20 Evaluate:∫sinx1+sin2xdx Commented by mr W last updated on 09/Jun/20 =−∫d(cosx)(2−cosx)(2+cosx)=−24∫[12−cosx+12+cosx]d(cosx)=24ln2−cosx2+cosx+C Answered by niroj last updated on 09/Jun/20 ∫sinx1+sin2xdx∫sinxdx1+1−cos2x=∫sinxdx2−cos2xPut,cosx=t−sinxdx=dtsinxdx=−dt−∫12−t2dt=−∫1(2)2−(t)2dt=−122log2+t2−t+C=−122log2+cosx2−cosx+C//. Answered by abdomathmax last updated on 09/Jun/20 I=∫sinxdx1+sin2x⇒I=∫sinxdx2−cos2xwedothechangementcosx=t⇒I=∫−dt2−t2=∫dtt2−2=122∫(1t−2−1t+2)dt=122ln∣t−2t+2∣+C⇒I=122ln∣cosx−2cosx+2∣+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculer-une-primitive-de-x-ln-1-x-2-puis-jusrifier-la-convergence-de-0-1-ln-1-x-2-dx-Next Next post: Given-the-roots-of-the-quadratic-equation-4x-2-4x-5-0-are-and-f-x-is-a-quadratic-function-where-f-f-and-f-0-6-Find-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.