Menu Close

Evaluate-sinx-1-sin-2-x-dx-




Question Number 97782 by 175 last updated on 09/Jun/20
Evaluate:  ∫ ((sinx)/(1 +sin^2 x))dx
Evaluate:sinx1+sin2xdx
Commented by mr W last updated on 09/Jun/20
=−∫((d(cos x))/(((√2)−cos x)((√2)+cos x)))  =−((√2)/4)∫[(1/( (√2)−cos x))+(1/( (√2)+cos x))]d(cos x)  =((√2)/4)ln (((√2)−cos x)/( (√2)+cos x))+C
=d(cosx)(2cosx)(2+cosx)=24[12cosx+12+cosx]d(cosx)=24ln2cosx2+cosx+C
Answered by niroj last updated on 09/Jun/20
  ∫ ((sin x )/(1+ sin^2 x))dx   ∫((  sin x dx)/(1+1−cos^2 x)) = ∫ (( sin x dx)/(2−cos^2 x))    Put ,cos x=t     −sin x dx= dt          sinxdx= −dt    −∫ (1/(2−t^2 ))dt   = −∫ (( 1)/(((√2) )^2 −(t)^2 ))dt   = −(1/(2(√2)))log (( (√2) +t)/( (√2)−t)) +C   = −(1/(2(√2))) log (( (√2)  +cos x)/( (√2)  −cos x)) +C //.
sinx1+sin2xdxsinxdx1+1cos2x=sinxdx2cos2xPut,cosx=tsinxdx=dtsinxdx=dt12t2dt=1(2)2(t)2dt=122log2+t2t+C=122log2+cosx2cosx+C//.
Answered by abdomathmax last updated on 09/Jun/20
I =∫  ((sinx dx)/(1+sin^2 x)) ⇒I =∫  ((sinxdx)/(2−cos^2 x))  we do the changement cosx =t ⇒  I =∫ ((−dt)/(2−t^2 )) =∫ (dt/(t^2 −2)) =(1/(2(√2)))∫ ((1/(t−(√2)))−(1/(t+(√2))))dt  =(1/(2(√2)))ln∣((t−(√2))/(t+(√2)))∣ +C  ⇒  I =(1/(2(√2)))ln∣((cosx−(√2))/(cosx +(√2)))∣ +C
I=sinxdx1+sin2xI=sinxdx2cos2xwedothechangementcosx=tI=dt2t2=dtt22=122(1t21t+2)dt=122lnt2t+2+CI=122lncosx2cosx+2+C

Leave a Reply

Your email address will not be published. Required fields are marked *