evaluate-t-2-1-3-4-t-dt- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 35412 by mondodotto@gmail.com last updated on 18/May/18 evaluate∫(t2+1+34t)dt Commented by prof Abdo imad last updated on 19/May/18 letputI=∫t2+34t+1dtI=12∫4t2+3t+4dtbut4t2+3t+4=(2t)2+2(2t).34+916−916=(2t+34)2−916changement2t+34=34ch(x)giveI=12∫916(ch2x−1)38sh(x)dt=316.34∫sh2xdt=964∫ch(2x)−12dt=9128x−912812sh(2x)+λbutwehavech(x)=43(2t+34)=8t3+1⇒x=argch(8t3+1)=ln(8t3+1+(8t3+1)2−1)sh(x)=ch2x−1=(8t3−1)2−1andsh(2x)=2sh(x)ch(x)⇒I=9128ln(8t3+1+(8t3+1)2−1)−9128(8t3+1)(8t3−1)2−1+λ Commented by prof Abdo imad last updated on 19/May/18 sh(x)=(8t3+1)2−1andI=9128ln(8t3+1+(8t3+1)2−1)−9128(8t3+1)(8t3+1)2−1+λ Answered by ajfour last updated on 18/May/18 ∫(t+38)2+(558)2dt=(8t+316)t2+3t4+1+55128ln∣t+38+t2+3t4+1∣+c. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-166481Next Next post: Question-100951 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.