Menu Close

evaluate-tan-d-




Question Number 43490 by peter frank last updated on 11/Sep/18
evaluate  ∫(√(tan𝛉 dθ))
evaluatetanθdθ
Commented by maxmathsup by imad last updated on 11/Sep/18
let I =∫ (√(tanθ))dθ    changement (√(tanθ)) =x give tanθ=x^2  ⇎θ=arctan(x^2 ) ⇒  I = ∫  x  ((2x)/(1+x^4 )) dx = ∫  ((2x^2 )/(1+x^4 )) dx  let decompose F(x)=((2x^2 )/(1+x^4 ))  F(x) = ((2x^2 )/((x^2 +1)^2  −2x^2 )) =((2x^2 )/((x^2  +(√2)x +1)(x^2 −(√2)x+1)))  =((ax+b)/(x^2  +(√2)x+1)) +((cx+d)/(x^2 −(√2)x+1))  F(−x) =F(x) ⇒((−ax +b)/(x^2  −(√2)x+1)) +((−cx+d)/(x^2 +(√2)x +1)) =F(x) ⇒c=−a and b=d ⇒  F(x) = ((ax+b)/(x^2 +(√2)x +1)) +((−ax +b)/(x^2  −(√2)x +1))  F(0) =0 = 2b ⇒b=0 ⇒F(x)=((ax)/(x^2 +(√2)x+1)) −((ax)/(x^2 −(√2)x +1))  F(1) =1 =  (a/(2+(√2))) −(a/(2−(√2))) ⇒(((−2(√2))/2))a=1 ⇒a=−(1/( (√2))) ⇒  F(x)= (1/( (√2))){ (1/(x^2 −(√2)x +1)) −(1/(x^2  +(√2)x +1))} ⇒  I =(1/( (√2))) ∫    (dx/(x^2 −(√2)x +1)) −(1/( (√2))) ∫     (dx/(x^2  +(√2)x+1)) but  ∫   (dx/(x^2 −(√2)x +1)) =∫    (dx/(x^2  −(2/( (√2)))x  +(1/2)+(1/2))) = ∫    (dx/((x−(1/( (√2))))^2  +(1/2)))  =_(x−(1/( (√2))) =(u/( (√2))))      ∫     (1/((1/2)(1+u^2 ))) (du/( (√2))) = (√2)  ∫  (du/(1+u^2 )) =(√2)arctan(u) +c_1   =(√2)arctan(x(√2)−1) +c_1 =(√2)arctan((√(2tanθ))−1) +c_1    also we have  ∫    (dx/(x^2  +(√2)x+1)) = ∫    (dx/((x+(1/( (√2))))^2  +(1/2))) =_(x+(1/( (√2)))=(u/( (√2))))     ∫      (1/((1/2)(1+u^2 ))) (du/( (√2)))  =(√2)arctan((√2)x+1) =(√2)arctan((√(2tanθ))+1) ⇒  ∫ (√(tanθ))dθ = arctan((√(2tanθ))−1) −arctan((√(2tanθ))+1) +c
letI=tanθdθchangementtanθ=xgivetanθ=x2θ=arctan(x2)I=x2x1+x4dx=2x21+x4dxletdecomposeF(x)=2x21+x4F(x)=2x2(x2+1)22x2=2x2(x2+2x+1)(x22x+1)=ax+bx2+2x+1+cx+dx22x+1F(x)=F(x)ax+bx22x+1+cx+dx2+2x+1=F(x)c=aandb=dF(x)=ax+bx2+2x+1+ax+bx22x+1F(0)=0=2bb=0F(x)=axx2+2x+1axx22x+1F(1)=1=a2+2a22(222)a=1a=12F(x)=12{1x22x+11x2+2x+1}I=12dxx22x+112dxx2+2x+1butdxx22x+1=dxx222x+12+12=dx(x12)2+12=x12=u2112(1+u2)du2=2du1+u2=2arctan(u)+c1=2arctan(x21)+c1=2arctan(2tanθ1)+c1alsowehavedxx2+2x+1=dx(x+12)2+12=x+12=u2112(1+u2)du2=2arctan(2x+1)=2arctan(2tanθ+1)tanθdθ=arctan(2tanθ1)arctan(2tanθ+1)+c
Commented by peter frank last updated on 11/Sep/18
thanks
thanks
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Sep/18
t^2 =tanθ  2tdt=sec^2 θ dθ  ((2t)/(1+t^4 ))dt=dθ  ∫((2t)/(1+t^4 ))×tdt  ∫((2t^2 )/(1+t^4 ))dt  ∫(2/(t^2 +(1/t^2 )))dt  ∫((1−(1/t^2 )+1+(1/t^2 ))/(t^2 +(1/t^2 )))dt  ∫((1−(1/t^2 ))/((t+(1/t))^2 −((√2) )^2 ))dt+∫((1+(1/t^2 ))/((t−(1/t))^2 +((√2) )^2 ))dt  ∫((d(t+(1/t)))/((t+(1/t))^2 −((√2) )^2 ))+∫((d(t−(1/t)))/((t−(1/t))^2 +((√2) )^2 ))  (1/(2(√2)))ln∣(((t+(1/t))−(√2) )/((t+(1/t))+(√2) ))∣+(1/( (√2)))tan^(−1) (((t−(1/t))/( (√2) )))+c  (1/(2(√2) ))ln∣(((√(tanθ)) +(1/( (√(tanθ)) ))−(√2))/( (√(tanθ)) +(1/( (√(tanθ)) ))+(√2)))∣+(1/( (√2) ))tan^(−1) ((((√(tanθ)) −(1/( (√(tanθ)) )))/( (√2) )))+c
t2=tanθ2tdt=sec2θdθ2t1+t4dt=dθ2t1+t4×tdt2t21+t4dt2t2+1t2dt11t2+1+1t2t2+1t2dt11t2(t+1t)2(2)2dt+1+1t2(t1t)2+(2)2dtd(t+1t)(t+1t)2(2)2+d(t1t)(t1t)2+(2)2122ln(t+1t)2(t+1t)+2+12tan1(t1t2)+c122lntanθ+1tanθ2tanθ+1tanθ+2+12tan1(tanθ1tanθ2)+c
Commented by peter frank last updated on 11/Sep/18
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *