Menu Close

evaluate-the-following-limit-if-it-exists-lim-n-ln-2-n-1-n-1-2-




Question Number 169514 by Giantyusuf last updated on 01/May/22
evaluate the following limit  (if it exists)  lim_(n→∞) ((ln^2 (n+1))/((n−1)^2 ))
evaluatethefollowinglimit(ifitexists)limnln2(n+1)(n1)2
Commented by Giantyusuf last updated on 01/May/22
your solution?
yoursolution?
Commented by greougoury555 last updated on 02/May/22
 lim_(n→∞) ((ln^2 (n+1))/((n−1)^2 )) = ( lim_(n→∞) ((ln (n+1))/(n−1)))^2    let ln (n+1)=u⇒n=e^u −1   ( lim_(u→∞)  (u/(e^u −2)))^2 = (lim_(u→∞)  (1/e^u ))^2 = 0
limnln2(n+1)(n1)2=(limnln(n+1)n1)2letln(n+1)=un=eu1(limuueu2)2=(limu1eu)2=0
Answered by Mathspace last updated on 01/May/22
=lim_(n→+∞) (((ln(n))/n))^2 =0
=limn+(ln(n)n)2=0

Leave a Reply

Your email address will not be published. Required fields are marked *