Menu Close

Evaluate-the-following-limit-lim-n-1-n-d-n-dx-n-e-x-1-x-1-x-0-




Question Number 163719 by HongKing last updated on 09/Jan/22
Evaluate the following limit:  Φ =lim_(n→∞)  - (1/(n!)) ∙ (d^n /dx^n ) ((e^(x-1) /(x - 1)))∣_(x=0)
Evaluatethefollowinglimit:Φ=limn1n!dndxn(ex1x1)x=0
Answered by Mathspace last updated on 09/Jan/22
f(x)=(e^(x−1) /(x−1)) ⇒Φ=lim_(n→∞) −(1/(n!))f^((n)) (0)  f^((n)) (x)=(1/e)((e^x /(x−1)))^((n))   ef^((n)) (x)=Σ_(k=0) ^n  C_n ^k ((1/(x−1)))^((k)) (e^x )^((n−k))   =(e^x /(x−1))+e^(x ) Σ_(k=1) ^n  C_n ^k (((−1)^k k!)/((x−1)^(k+1) )) ⇒  f^((n)) (0)=−1+Σ_(k=1) ^(n ) C_n ^k (−1)^(k+1) (−1)^k k!  =−1−Σ_(k=1) ^n  ((n!)/((n−k)!)) ⇒  −(1/(n!))f^((n)) (0)=(1/(n!))+Σ_(k=1) ^n  (1/((n−k)!))  =Σ_(k=0) ^n  (1/((n−k)!))=_(n−k=p)  Σ_(p=0) ^(n ) (1/(p!))  ⇒lim_(n→+∞) −(1/(n!))f^((n)) (0)=  Σ_(p=0) ^∞  (1/(p!)) =e   (e^x  =Σ(x^n /(n!)))
f(x)=ex1x1Φ=limn1n!f(n)(0)f(n)(x)=1e(exx1)(n)ef(n)(x)=k=0nCnk(1x1)(k)(ex)(nk)=exx1+exk=1nCnk(1)kk!(x1)k+1f(n)(0)=1+k=1nCnk(1)k+1(1)kk!=1k=1nn!(nk)!1n!f(n)(0)=1n!+k=1n1(nk)!=k=0n1(nk)!=nk=pp=0n1p!limn+1n!f(n)(0)=p=01p!=e(ex=Σxnn!)
Commented by Mathspace last updated on 09/Jan/22
f^((n)) (0)=(1/e)(−1−...) ⇒  lim_(n→+∞) −(1/(n!))f^((n)) (0)=(1/e)Σ_(p=0) ^∞  (1/(p!)) =1
f(n)(0)=1e(1)limn+1n!f(n)(0)=1ep=01p!=1
Commented by HongKing last updated on 09/Jan/22
perfect my dear Sir thank you so much
perfectmydearSirthankyousomuch
Commented by Mathspace last updated on 09/Jan/22
you are welcome sir
youarewelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *