Evaluate-the-Integral-pi-2-pi-2-0-3-cos-r-2-sin-2-dr-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37912 by gunawan last updated on 19/Jun/18 Evaluate:theIntegral∫−π2π2∫03cosθr2sin2θ.drdθ Commented by math khazana by abdo last updated on 19/Jun/18 I=∫−π2π2A(θ)sin2θdθwithA(θ)=∫03cosθr2dr=13[r3]03cosθ=1327cos3θ=9cos3θ⇒I=9∫−π2π2sin2θcos3θdθ=sinθ=t∫−11t2(1−t2)1−t2dt1−t2=∫−11(t2−t4)dt=2[t33−t55]01=2{13−15}=2215=415⇒I=9.415=125I=125. Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18 ∫−Π2Π2sin2θ×∣r33∣03cosθdθ13∫−Π2Π2sin2θ×27cos3θdθ9∫−Π2Π2sin2θ.(1−sin2θ)cosθdθt=sinθdt=cosθdθ9∫−11(t2−t4)dt9∣t33−t55∣−119{(13−15)−(−13−−15)}9{13−15+13−15}18(13−15)=18×215=125 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: the-function-f-x-is-defined-by-f-x-x-1-for-x-3-kx-8-for-x-3-find-the-value-of-k-Next Next post: Solve-the-diferential-equatuion-dy-dx-2x-y-1-x-2y-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.