Menu Close

Evaluate-the-Integral-pi-2-pi-2-0-3-cos-r-2-sin-2-dr-d-




Question Number 37912 by gunawan last updated on 19/Jun/18
Evaluate : the Integral  ∫_(-(π/2)) ^(π/2) ∫_0 ^(3 cos θ) r^2 sin^2 θ. dr dθ
Evaluate:theIntegralπ2π203cosθr2sin2θ.drdθ
Commented by math khazana by abdo last updated on 19/Jun/18
I = ∫_(−(π/2)) ^(π/2) A(θ)sin^2 θdθ with  A(θ) = ∫_0 ^(3cosθ)  r^2 dr =(1/3)[r^3 ]_0 ^(3cosθ) =(1/3) 27 cos^3 θ  =9 cos^3 θ ⇒I =9∫_(−(π/2)) ^(π/2)  sin^2 θ cos^3 θ dθ  =_(sinθ =t)     ∫_(−1) ^1  t^2 (1−t^2 )(√(1−t^2 )) (dt/( (√(1−t^2 ))))  =∫_(−1) ^1  (t^2  −t^4 )dt=2[ (t^3 /3) −(t^5 /5)]_0 ^1   =2 { (1/3) −(1/5)}=2(2/(15)) =(4/(15)) ⇒ I =9 .(4/(15)) = ((12)/5)  I =((12)/5) .
I=π2π2A(θ)sin2θdθwithA(θ)=03cosθr2dr=13[r3]03cosθ=1327cos3θ=9cos3θI=9π2π2sin2θcos3θdθ=sinθ=t11t2(1t2)1t2dt1t2=11(t2t4)dt=2[t33t55]01=2{1315}=2215=415I=9.415=125I=125.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
∫_((−Π)/2) ^(Π/2)  sin^2 θ×∣(r^3 /3)∣_0 ^(3cosθ) dθ  (1/3)∫_((−Π)/2) ^(Π/2)  sin^2 θ×27cos^3 θdθ  9∫_(−(Π/2)) ^(Π/2)  sin^2 θ.(1−sin^2 θ)cosθdθ  t=sinθ  dt=cosθdθ  9∫_(−1) ^1 (t^2 −t^4 )dt  9∣(t^3 /3)−(t^5 /5)∣_(−1) ^1   9{((1/3)−(1/5))−(((−1)/3)−((−1)/5))}  9{(1/3)−(1/5)+(1/3)−(1/5)}  18((1/3)−(1/5))=18×(2/(15))=((12)/5)
Π2Π2sin2θ×r3303cosθdθ13Π2Π2sin2θ×27cos3θdθ9Π2Π2sin2θ.(1sin2θ)cosθdθt=sinθdt=cosθdθ911(t2t4)dt9t33t55119{(1315)(1315)}9{1315+1315}18(1315)=18×215=125

Leave a Reply

Your email address will not be published. Required fields are marked *