Menu Close

evaluate-the-limit-if-it-exists-lim-n-n-4-2n-3-n-2-n-2-3-




Question Number 169527 by Giantyusuf last updated on 01/May/22
evaluate the limit(if it exists)  lim_(n→∞) [(((√(n^4 −2n^3 ))−n^2 )/(n+2))]^3
evaluatethelimit(ifitexists)limn[n42n3n2n+2]3
Commented by infinityaction last updated on 02/May/22
      p  =  lim_(n→∞)  [((n^2 ((√(1−(2/n))) −1))/(n+2))]^3        use binomail theorem for rational index       (1+x)^(n  ) = 1+nx+((n(n+1))/(2!))x^2 +.....  where −1 ⪇ x⪇1            p   =    lim_(n→∞)   [((1 −(1/n)  −1)/((1/n)(1+(2/n))))]^3             p    =    lim_(n→∞)  [ ((−1)/((1+(2/n))))]^3    =  −1
p=limn[n2(12n1)n+2]3usebinomailtheoremforrationalindex(1+x)n=1+nx+n(n+1)2!x2+..where1x1p=limn[11n11n(1+2n)]3p=limn[1(1+2n)]3=1
Answered by cortano1 last updated on 02/May/22
 lim_(x→∞) ((((√(x^4 −2x^3 ))−x^2 )/(x+2)))^3 = (lim_(x→∞) ((x^2 (√(1−(2/x)))−x^2 )/(x+2)) )^3   = (lim_(x→∞) (((√(1−(2/x)))−1)/((1/x)+(2/x^2 ))) )^3    = (lim_(x→0)  (((√(1−2x))−1)/(x+2x^2 )))^3   =(lim_(x→0)  ((−2x)/(x(1+2x)((√(1−2x))+1))))^3   = (lim_(x→0)  ((−2)/((1+2x)((√(1−2x))+1))))^3   = (((−2)/(1(1+1))))^3 =−1
limx(x42x3x2x+2)3=(limxx212xx2x+2)3=(limx12x11x+2x2)3=(limx012x1x+2x2)3=(limx02xx(1+2x)(12x+1))3=(limx02(1+2x)(12x+1))3=(21(1+1))3=1

Leave a Reply

Your email address will not be published. Required fields are marked *