Menu Close

Evaluate-using-cauchy-s-integral-c-e-ipi-z-2-4-2-z-1-2-dz-where-c-is-a-circle-with-z-i-3-5-help-please-




Question Number 85260 by Umar last updated on 20/Mar/20
Evaluate using cauchy′s integral            ∫_c  (e^(iπ) /((z^2 +4)^2 (z+1)^2 ))dz  where c is a circle with ∣z−i∣=3.5    help please
Evaluateusingcauchysintegralceiπ(z2+4)2(z+1)2dzwherecisacirclewithzi∣=3.5helpplease
Commented by mathmax by abdo last updated on 20/Mar/20
I =∫_C   (e^(iπ) /((z^2  +4)^2 (z+1)^2 ))dz  let W(z) =(e^(iπ) /((z^2  +4)^2 (z+1)^2 )) poles of W?  W(z) =(e^(iπ) /((z−2i)^2 (z+2i)^2 (z+1)^2 ))   so the poles are 2i,−2i  and −1  (doubles) we have ∣2i−i∣=∣i∣=1<(7/2)  ∣−2i−i∣ =∣3i∣=3<(7/2)  ∣−1−i∣ =∣1+i∣=(√2)<(7/2) so ∫_C W(z)dz =  2iπ{ Res(W,2i) +Res(W,−2i) +Res(W,−1)}  Res(W,2i) =lim_(z→2i)   (1/((2−1)!)){ (z−2i)^2 W(z)}^((1))   =lim_(z→2i)    { (e^(iπ) /((z+2i)^2 (z+1)^2 ))}^((1))   =e^(iπ)  lim_(z→2i)   { −((2(z+2i)(z+1)^2  +2(z+1)(z+2i)^2 )/((z+2i)^4 (z+1)^4 ))}  =−e^(iπ)  lim_(z→2i)    {((2(2z+1)+2(z+2i))/((z+2i)^3 (z+1)^3 ))}  =−e^(iπ) ×((2(4i+1)+2(4i))/((4i)^3 (2i+1)^3 )) =−e^(iπ)  ×((16i +2)/(−64i (2i+1)^3 )) =e^(iπ) ×((8i+1)/(32i(2i+1)^3 ))  we do the same way for Res(W,−2i)  Res(W,−1) =lim_(z→−1)  (1/((2−1)!)){(z+1)^2 W(z)}^((1))   =lim_(z→−1)    {(e^(iπ) /((z−2i)^2 (z+2i)^2 ))}^((1))   =lim_(z→−1)    e^(iπ) {  (1/((z^2  +4)^2 ))}^((1))  =e^(iπ) lim_(z→−1)  −((2(2z)(z^2  +4))/((z^2  +4)^4 ))  =−4e^(iπ)  lim_(z→−1)    (z/((z^2  +4)^3 )) =4e^(iπ)  ×(1/5^3 )
I=Ceiπ(z2+4)2(z+1)2dzletW(z)=eiπ(z2+4)2(z+1)2polesofW?W(z)=eiπ(z2i)2(z+2i)2(z+1)2sothepolesare2i,2iand1(doubles)wehave2ii∣=∣i∣=1<722ii=∣3i∣=3<721i=∣1+i∣=2<72soCW(z)dz=2iπ{Res(W,2i)+Res(W,2i)+Res(W,1)}Res(W,2i)=limz2i1(21)!{(z2i)2W(z)}(1)=limz2i{eiπ(z+2i)2(z+1)2}(1)=eiπlimz2i{2(z+2i)(z+1)2+2(z+1)(z+2i)2(z+2i)4(z+1)4}=eiπlimz2i{2(2z+1)+2(z+2i)(z+2i)3(z+1)3}=eiπ×2(4i+1)+2(4i)(4i)3(2i+1)3=eiπ×16i+264i(2i+1)3=eiπ×8i+132i(2i+1)3wedothesamewayforRes(W,2i)Res(W,1)=limz11(21)!{(z+1)2W(z)}(1)=limz1{eiπ(z2i)2(z+2i)2}(1)=limz1eiπ{1(z2+4)2}(1)=eiπlimz12(2z)(z2+4)(z2+4)4=4eiπlimz1z(z2+4)3=4eiπ×153
Answered by mind is power last updated on 20/Mar/20
(1/(2iπ))∫_C ((f(z))/(z−w))dz=f(w)  werr C is contour wich contien w  w∈C  f′(w)=(1/(2iπ))∫_C ((f(z))/((z−w)^2 ))dz  ⇒(1/(2iπ))∫_C (1/((z−2i)^2 ))((e^(iπ) dz)/((z+2i)^2 (z+1)^2 ))=g′(2i)+h′(−2i)+t′(−1)  g(z)=(e^(iπ) /((z+2i)^2 (z+1)^2 )),h(z)=(e^(iπ) /((z−2i)^2 (z+1)^2 )),t(z)=(e^(iπ) /((z^2 +4)^2 ))  ⇒∫((e^(iπ) dz)/((z^2 +4)^2 (z+1)^2 ))=2iπ(g′(2i)+h′(−2i)+t′(−1))    =
12iπCf(z)zwdz=f(w)werrCiscontourwichcontienwwCf(w)=12iπCf(z)(zw)2dz12iπC1(z2i)2eiπdz(z+2i)2(z+1)2=g(2i)+h(2i)+t(1)g(z)=eiπ(z+2i)2(z+1)2,h(z)=eiπ(z2i)2(z+1)2,t(z)=eiπ(z2+4)2eiπdz(z2+4)2(z+1)2=2iπ(g(2i)+h(2i)+t(1))=
Commented by Umar last updated on 20/Mar/20
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *