Evaluate-using-cauchy-s-integral-c-e-ipi-z-2-4-2-z-1-2-dz-where-c-is-a-circle-with-z-i-3-5-help-please- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 85260 by Umar last updated on 20/Mar/20 Evaluateusingcauchy′sintegral∫ceiπ(z2+4)2(z+1)2dzwherecisacirclewith∣z−i∣=3.5helpplease Commented by mathmax by abdo last updated on 20/Mar/20 I=∫Ceiπ(z2+4)2(z+1)2dzletW(z)=eiπ(z2+4)2(z+1)2polesofW?W(z)=eiπ(z−2i)2(z+2i)2(z+1)2sothepolesare2i,−2iand−1(doubles)wehave∣2i−i∣=∣i∣=1<72∣−2i−i∣=∣3i∣=3<72∣−1−i∣=∣1+i∣=2<72so∫CW(z)dz=2iπ{Res(W,2i)+Res(W,−2i)+Res(W,−1)}Res(W,2i)=limz→2i1(2−1)!{(z−2i)2W(z)}(1)=limz→2i{eiπ(z+2i)2(z+1)2}(1)=eiπlimz→2i{−2(z+2i)(z+1)2+2(z+1)(z+2i)2(z+2i)4(z+1)4}=−eiπlimz→2i{2(2z+1)+2(z+2i)(z+2i)3(z+1)3}=−eiπ×2(4i+1)+2(4i)(4i)3(2i+1)3=−eiπ×16i+2−64i(2i+1)3=eiπ×8i+132i(2i+1)3wedothesamewayforRes(W,−2i)Res(W,−1)=limz→−11(2−1)!{(z+1)2W(z)}(1)=limz→−1{eiπ(z−2i)2(z+2i)2}(1)=limz→−1eiπ{1(z2+4)2}(1)=eiπlimz→−1−2(2z)(z2+4)(z2+4)4=−4eiπlimz→−1z(z2+4)3=4eiπ×153 Answered by mind is power last updated on 20/Mar/20 12iπ∫Cf(z)z−wdz=f(w)werrCiscontourwichcontienww∈Cf′(w)=12iπ∫Cf(z)(z−w)2dz⇒12iπ∫C1(z−2i)2eiπdz(z+2i)2(z+1)2=g′(2i)+h′(−2i)+t′(−1)g(z)=eiπ(z+2i)2(z+1)2,h(z)=eiπ(z−2i)2(z+1)2,t(z)=eiπ(z2+4)2⇒∫eiπdz(z2+4)2(z+1)2=2iπ(g′(2i)+h′(−2i)+t′(−1))= Commented by Umar last updated on 20/Mar/20 thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: R-r-2-R-2-R-r-2-R-2-r-2-2rR-R-2-R-2-r-2-2rR-R-2-4rR-r-R-4-1cm-A-S-pir-2-pi-1cm-2-picm-2-Next Next post: find-the-centre-of-symmetry-of-the-curve-y-1-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.