Menu Close

Evaluate-without-using-L-hopital-s-rule-lim-x-4-x-2-x-4-




Question Number 110988 by Rio Michael last updated on 01/Sep/20
 Evaluate without using L′hopital′s rule    lim_(x→4)  (((√x)−2)/(x−4))
EvaluatewithoutusingLhopitalsrulelimx4x2x4
Answered by Rasheed.Sindhi last updated on 01/Sep/20
  lim_(x→4)  (((√x)−2)/(x−4))     (((√x)−2)/( ((√x))^2 −(2)^2 ))=(((√x)−2)/( ((√x)−2)((√x)+2)))  =(1/( ((√x)+2)))    lim_(x→4)  (((√x)−2)/(x−4))=lim_(x→4) (1/( ((√x)+2)))=(1/( (√4)+2))  =(1/4)
limx4x2x4x2(x)2(2)2=x2(x2)(x+2)=1(x+2)limx4x2x4=limx41(x+2)=14+2=14
Commented by Rio Michael last updated on 01/Sep/20
correct sir.
correctsir.
Answered by malwan last updated on 02/Sep/20
lim_(x→4) (((√x)−2)/(x−4))×(((√x)+2)/( (√x)+2))  =lim_(x→4) ((x−4)/((x−4)((√x)+2)))  =lim_(x→4) (1/( (√x)+2)) = (1/( (√4)+2)) = (1/4)
limx4x2x4×x+2x+2=limx4x4(x4)(x+2)=limx41x+2=14+2=14
Answered by bemath last updated on 01/Sep/20
let (√x) = b ⇒x = b^2   lim_(b→2)  ((b−2)/(b^2 −4)) = lim_(b→2)  (1/(b+2)) = (1/4)
letx=bx=b2limb2b2b24=limb21b+2=14

Leave a Reply

Your email address will not be published. Required fields are marked *