Menu Close

Evaluate-x-2x-2-4x-7-dx-




Question Number 179511 by Acem last updated on 30/Oct/22
Evaluate ∫(x/( (√(2x^2 −4x−7)))) dx
Evaluatex2x24x7dx
Answered by ARUNG_Brandon_MBU last updated on 30/Oct/22
=(1/4)∫((4x−4)/( (√(2x^2 −4x−7))))dx+∫(dx/( (√(2(x−1)^2 −9))))  =((√(2x^2 −4x−7))/2)+((√2)/2)arcsin((((√2)(x−1))/( 3)))+C
=144x42x24x7dx+dx2(x1)29=2x24x72+22arcsin(2(x1)3)+C
Commented by Acem last updated on 30/Oct/22
Thanks!
Thanks!
Commented by Ar Brandon last updated on 30/Oct/22
You're welcome!
Commented by Frix last updated on 31/Oct/22
∫(dx/( (√(2(x−1)^2 −9))))=((√2)/2)cosh^(−1)  (((√2)(x−1))/3)
dx2(x1)29=22cosh12(x1)3
Commented by Ar Brandon last updated on 08/Nov/22
You're right. Thanks
Answered by Acem last updated on 30/Oct/22
∫(x/( (√(2x^2 −4x−7)))) dx   2x^2 −4x−7= 2(x^2 −2x+1−(9/2))= 2(x−1)^2 −9   x−1= (3/( (√2))) sec θ  ,  dx= (3/( (√2))) sec θ tan θ dθ   (√(2x^2 −4x−7 ))= 3 (√(sec^2  θ−1 ))= 3 ∣tan θ∣= 3 tan θ   I= (1/( (√2))) ∫ (1+(3/( (√2))) sec θ)sec θ dθ   I= (1/( (√2))) ln ∣sec θ+tan θ∣ + (3/2) tan θ + c   Since sec θ= (((√2) (x−1))/3) ⇒ tan θ= ((√(2 (x−1)^2 −9))/3)   I= (1/( (√2))) ln ∣(((√2) (x−1) + (√(2x^2 −4x−7 )) )/3)∣+(1/2) (√(2x^2 −4x−7 )) + c
x2x24x7dx2x24x7=2(x22x+192)=2(x1)29x1=32secθ,dx=32secθtanθdθ2x24x7=3sec2θ1=3tanθ∣=3tanθI=12(1+32secθ)secθdθI=12lnsecθ+tanθ+32tanθ+cSincesecθ=2(x1)3tanθ=2(x1)293I=12ln2(x1)+2x24x73+122x24x7+c

Leave a Reply

Your email address will not be published. Required fields are marked *