Menu Close

Evaluer-1-logx-1-x-dx-




Question Number 179494 by a.lgnaoui last updated on 29/Oct/22
Evaluer  ∫((1−logx)/(1+x))dx
Evaluer1logx1+xdx
Answered by ARUNG_Brandon_MBU last updated on 29/Oct/22
∫((1−logx)/(1+x))dx  =log(1+x)−Σ_(n=0) ^∞ (−1)^n ∫x^n logxdx  =log(1+x)−Σ_(n≥0) (−1)^n (((x^(n+1) logx)/(n+1))−(1/(n+1))∫x^n dx)  =log(1+x)−Σ_(n≥0) (−1)^n (((x^(n+1) logx)/(n+1))−(x^(n+1) /((n+1)^2 )))
1logx1+xdx=log(1+x)n=0(1)nxnlogxdx=log(1+x)n0(1)n(xn+1logxn+11n+1xndx)=log(1+x)n0(1)n(xn+1logxn+1xn+1(n+1)2)
Commented by a.lgnaoui last updated on 30/Oct/22
good thank you
goodthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *