Menu Close

Exclude-m-and-n-from-the-equalities-a-m-n-b-3-m-3-n-3-c-5-m-5-n-5-




Question Number 109544 by 1549442205PVT last updated on 25/Aug/20
Exclude m and n from the equalities:  a=m+n,b^3 =m^3 +n^3 ,c^5 =m^5 +n^5
Excludemandnfromtheequalities:a=m+n,b3=m3+n3,c5=m5+n5
Commented by Her_Majesty last updated on 24/Aug/20
only 2 equalities are necessary to get m and  n ⇒ it′s an easy task  let m=x−y∧n=x+y  a=2x ⇒ x=(a/2)  b^3 =3ay^2 +(a^3 /4) ⇒ y^2 =((4b^3 −a^3 )/(12a))  c^5 =((5b^6 +5a^3 b^3 −a^6 )/(9a))
only2equalitiesarenecessarytogetmandnitsaneasytaskletm=xyn=x+ya=2xx=a2b3=3ay2+a34y2=4b3a312ac5=5b6+5a3b3a69a
Answered by ajfour last updated on 24/Aug/20
m^3 +n^3 =(m+n){(m+n)^2 −3mn}  b^3 =a(a^2 −3mn)  m^5 +n^5 =(m^3 +n^3 )(m^2 +n^2 )                          −m^2 n^2 (m+n)     ⇒   c^5 =b^3 {a^2 −(2/3)(a^2 −(b^3 /a))}−(a/9)(a^2 −(b^3 /a))^2
m3+n3=(m+n){(m+n)23mn}b3=a(a23mn)m5+n5=(m3+n3)(m2+n2)m2n2(m+n)c5=b3{a223(a2b3a)}a9(a2b3a)2
Commented by 1549442205PVT last updated on 25/Aug/20
Thank both Sirs
ThankbothSirs
Answered by 1549442205PVT last updated on 25/Aug/20
From the hypothesis we have  a^3 =(m+n)^3 =m^3 +n^3 +3mn(m+n)=  b^3 +3mna⇒mn=((a^3 −b^3 )/(3a))(1)  a^5 =(m+n)^5 =m^5 +n^5 +5mn(m^3 +n^3 )  +10(mn)^2 (m+n)=c^5 +5mnb^3 +  +10mna(2).Replace(1)into (2) we get  a^5 −c^5 =5b^3 .((a^3 −b^3 )/(3a))+10a.(((a^3 −b^3 )/(3a)))^2   =((a^3 −b^3 )/(3a))(5b^3 +10a.((a^3 −b^3 )/(3a)))  =((a^3 −b^3 )/(3a)).((10a^3 +5b^3 )/3).Finally,we obtain  9a(a^5 −c^5 )=5(a^3 −b^3 )(2a^3 +b^3 )
Fromthehypothesiswehavea3=(m+n)3=m3+n3+3mn(m+n)=b3+3mnamn=a3b33a(1)a5=(m+n)5=m5+n5+5mn(m3+n3)+10(mn)2(m+n)=c5+5mnb3++10mna(2).Replace(1)into(2)weget\boldsymbola5\boldsymbolc5=5\boldsymbolb3.a3b33a+10a.(a3b33a)2=a3b33a(5b3+10a.a3b33a)=a3b33a.10a3+5b33.Finally,weobtain9\boldsymbola(\boldsymbola5\boldsymbolc5)=5(\boldsymbola3\boldsymbolb3)(2\boldsymbola3+\boldsymbolb3)

Leave a Reply

Your email address will not be published. Required fields are marked *