Menu Close

Exercise-Given-a-b-R-and-t-is-a-variable-real-1-Solve-in-R-2-for-x-y-this-system-xsin-t-ycos-t-a-xcos-t-ysin-t-b-2-Demonstrate-that-these-solutions-can-be-written-like-thi




Question Number 95001 by mathocean1 last updated on 22/May/20
Exercise  Given a, b ∈ R^∗  and t is a variable real.  1) Solve in R^2  for x,y this system:    { ((xsin t−ycos t=−a)),((xcos t+ysin t=b.)) :}    2)/Demonstrate that these solutions can  be written like this ( r and θ ∈ R).   { ((x=rcos(t+θ))),((y=rsin(t+θ))) :}    3) we suppose now that a=b=1 and θ=(π/(12))  solve this in [0;2π[   { ((rcos(t+θ)≥−1)),((rsin(t+θ)<−1)) :}
ExerciseGivena,bRandtisavariablereal.1)SolveinR2forx,ythissystem:{xsintycost=axcost+ysint=b.2)/Demonstratethatthesesolutionscanbewrittenlikethis(randθR).{x=rcos(t+θ)y=rsin(t+θ)3)wesupposenowthata=b=1andθ=π12solvethisin[0;2π[{rcos(t+θ)1rsin(t+θ)<1
Answered by bobhans last updated on 22/May/20
(1)⇒(i)x^2 sin^2 t−2xysin tcos t+y^2 cos^2 t = a^2   ⇒(ii)x^2 cos^2 t+2xycos tsin t+y^2 sin^2 t = b^2   (i)+(ii) ⇒ x^2 + y^2 −2xy(sin tcos t−cos tsin t) = a^2 +b^2   ⇒ x^2  + y^2  = a^2  + b^2
(1)(i)x2sin2t2xysintcost+y2cos2t=a2(ii)x2cos2t+2xycostsint+y2sin2t=b2(i)+(ii)x2+y22xy(sintcostcostsint)=a2+b2x2+y2=a2+b2
Answered by mathmax by abdo last updated on 22/May/20
1)   { ((sint x−cost y =−a)),((cost x +sint y =b)) :}  Δ_s = determinant (((sint       −cost)),((cost         sint)))=sin^2 t +cos^2 t?=1 ≠0 ⇒  x =(Δ_x /Δ)  and y =((Δy)/Δ)  we have Δ_x = determinant (((−a       −cost)),((b                sint)))=−asint  +bcost  Δ_y = determinant (((sint       −a)),((cost           b)))=bsint +acost ⇒  x=bcost −asint  and y =acost +bsint  2) we have x =(√(a^2  +b^2 ))((b/( (√(a^2  +b^2 )))) cost−(a/( (√(a^2  +b^2 ))))sint)  let cosθ =(b/( (√(a^2  +b^2 ))))  and sinθ =(a/( (√(a^2  +b^2 )))) and r=(√(a^2  +b^2 ))  ⇒x =r(cost cosθ−sint sinθ) =r cos(t+θ)  y =(√(a^2  +b^2 ))((a/( (√(a^2  +b^2 )))) cost +(b/( (√(a^2  +b^2 ))))sint) =r(sinθ cost +cosθ sint)  =r sin(t+θ)
1){sintxcosty=acostx+sinty=bΔs=|sintcostcostsint|=sin2t+cos2t?=10x=ΔxΔandy=ΔyΔwehaveΔx=|acostbsint|=asint+bcostΔy=|sintacostb|=bsint+acostx=bcostasintandy=acost+bsint2)wehavex=a2+b2(ba2+b2costaa2+b2sint)letcosθ=ba2+b2andsinθ=aa2+b2andr=a2+b2x=r(costcosθsintsinθ)=rcos(t+θ)y=a2+b2(aa2+b2cost+ba2+b2sint)=r(sinθcost+cosθsint)=rsin(t+θ)
Commented by mathocean1 last updated on 08/Jun/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *