exercise-Let-a-and-b-be-natural-integers-such-that-0-lt-a-lt-b-1-Show-that-if-a-divides-b-then-for-any-naturel-number-n-n-a-1-divides-n-b-1-2-For-any-non-zero-naturel-number-n-prove-that-t Tinku Tara June 4, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 144980 by henderson last updated on 01/Jul/21 exercise―Letaandbbenaturalintegerssuchthat0<a<b.1.Showthatifadividesb,thenforanynaturelnumbern,na−1dividesnb−1.2.Foranynon−zeronaturelnumbern,provethattheremainderoftheeuclideandivisionofnb−1byna−1isnr−1whereristheremainderoftheeuclideandivisionofbbya.3.Foranynon−zeronaturelnumbern,showthatgcd(nb−1,na−1)=nd−1whered=gcd(b,c).byprofessorhenderson―. Answered by mindispower last updated on 01/Jul/21 a∣b⇒na−1∣nb−1Xcn−1=(Xc−1)(1+Xc+X2c…..+X.c(n−1))a∣b⇒b=manb−1=nma−1=(na−1).(1+na+……..+na(m−1)).using(1)⇒na−1∣nb−1b=ma+rnb−1=nma+r−1+nr−nrnb−1=nr(nma−1)+nr−1na−1∣nma−1…..byusinga∣ma⇒nb−1≡(nr−1)mod(na−1)since0⩽nr−1<min(na−1,nb−1)nr−1isremainderofdivisionnb−1byna−1letd=gcd(a,b)⇒nd−1∣na−1,nb−1withe1supoosem∣(na−1,nb−1)b>ab=am+r⇒m∣na−1,nr−1byreccuraionofeuclid⇒m∣nd−1⇒nd−1>m⇒∀M∈NM∣(na−1,nb−1)⇒M∣nd−1nd−1=gcd(na−1,nb−1) Commented by greg_ed last updated on 01/Jul/21 sir,thislinena−1∣nma−1…..byusinga∣maisn′tna−1∣nma−1…..byusinga∣ma? Commented by mindispower last updated on 03/Jul/21 yessir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-sin-x-1-x-1-x-sin-x-Next Next post: k-1-35-k-k-k-2-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.