Menu Close

exercise-Let-a-and-b-be-natural-integers-such-that-0-lt-a-lt-b-1-Show-that-if-a-divides-b-then-for-any-naturel-number-n-n-a-1-divides-n-b-1-2-For-any-non-zero-naturel-number-n-prove-that-t




Question Number 144980 by henderson last updated on 01/Jul/21
exercise  Let a and b be natural integers such that 0<a<b.  1. Show that if a divides b, then for any naturel   number n, n^a −1 divides n^b −1.    2. For any non−zero naturel number n, prove   that the remainder of the euclidean division of   n^b −1 by n^a −1 is n^r −1 where r is the remainder  of the euclidean division of b by a.    3. For any non−zero naturel number n, show   that gcd(n^b −1, n^a −1) = n^d −1 where d = gcd(b,c).                   by professor henderson^(−) .
exerciseLetaandbbenaturalintegerssuchthat0<a<b.1.Showthatifadividesb,thenforanynaturelnumbern,na1dividesnb1.2.Foranynonzeronaturelnumbern,provethattheremainderoftheeuclideandivisionofnb1byna1isnr1whereristheremainderoftheeuclideandivisionofbbya.3.Foranynonzeronaturelnumbern,showthatgcd(nb1,na1)=nd1whered=gcd(b,c).byprofessorhenderson.
Answered by mindispower last updated on 01/Jul/21
 a∣b⇒n^a −1∣n^b −1  X^(cn) −1=(X^c −1)(1+X^c +X^(2c) .....+X^(.c(n−1)) )  a∣b⇒b=ma  n^b −1=n^(ma) −1=(n^a −1).(1+n^a +........+n^(a(m−1)) ).using (1)  ⇒n^a −1∣n^b −1  b=ma+r  n^b −1=n^(ma+r) −1+n^r −n^r   n^b −1=n^r (n^(ma) −1)+n^r −1  n^(a−1) ∣n^(ma) −1.....by using a∣ma  ⇒n^b −1≡(n^r −1)mod(n^a −1)  since0≤ n^r −1<min(n^a −1,n^b −1)  n^r −1 is remainder of division   n^b −1by n^a −1  let d=gcd(a,b)  ⇒n^d −1∣n^a −1,n^b −1 withe 1  supoose m∣(n^a −1,n^b −1)  b>a  b=am+r  ⇒m∣n^a −1,n^r −1  by reccuraion of euclid  ⇒m∣n^d −1⇒n^d −1>m  ⇒∀M∈N M∣(n^a −1,n^b −1)⇒M∣n^d −1  n^d −1=gcd(n^a −1,n^b −1)
abna1nb1Xcn1=(Xc1)(1+Xc+X2c..+X.c(n1))abb=manb1=nma1=(na1).(1+na+..+na(m1)).using(1)na1nb1b=ma+rnb1=nma+r1+nrnrnb1=nr(nma1)+nr1na1nma1..byusingamanb1(nr1)mod(na1)since0nr1<min(na1,nb1)nr1isremainderofdivisionnb1byna1letd=gcd(a,b)nd1na1,nb1withe1supoosem(na1,nb1)b>ab=am+rmna1,nr1byreccuraionofeuclidmnd1nd1>mMNM(na1,nb1)Mnd1nd1=gcd(na1,nb1)
Commented by greg_ed last updated on 01/Jul/21
sir, this line n^(a−1) ∣n^(ma) −1.....by using a∣ma isn′t   n^a −1∣n^(ma) −1.....by using a∣ma ?
sir,thislinena1nma1..byusingamaisntna1nma1..byusingama?
Commented by mindispower last updated on 03/Jul/21
yes sir
yessir

Leave a Reply

Your email address will not be published. Required fields are marked *