Menu Close

expand-1-x-1-using-maclaurins-theorem-and-talyors-formula-




Question Number 87245 by redmiiuser last updated on 03/Apr/20
expand   (1+x)^(−1)   using maclaurins  theorem and talyors  formula
expand(1+x)1usingmaclaurinstheoremandtalyorsformula
Commented by jagoll last updated on 03/Apr/20
f(0) = 1  f ′(x)=−(1+x)^(−2)  ⇒f ′(0) = −1  f′′(x)= 2(1+x)^(−3)  ⇒f′′(0) = 2  f′′′(x)=−6(1+x)^(−4)  ⇒f^((3))  (0)=−6  f^((4)) (x)=24(1+x)^(−4) ⇒f^((4)) (0)=24  f(x) = 1 −x+x^2 −x^3 +x^(4 ) +...  = Σ_(n=1) ^∞ (−x)^(n−1)
f(0)=1f(x)=(1+x)2f(0)=1f(x)=2(1+x)3f(0)=2f(x)=6(1+x)4f(3)(0)=6f(4)(x)=24(1+x)4f(4)(0)=24f(x)=1x+x2x3+x4+=n=1(x)n1
Commented by jagoll last updated on 03/Apr/20
x ≠ −1
x1
Commented by redmiiuser last updated on 03/Apr/20
ok mister i want to ask  are there any conditions  for the above expansion.
okmisteriwanttoaskarethereanyconditionsfortheaboveexpansion.
Commented by jagoll last updated on 03/Apr/20
i think no sir
ithinknosir
Commented by redmiiuser last updated on 03/Apr/20
Are you 100% sure.
Areyou100%sure.
Commented by Ar Brandon last updated on 03/Apr/20
∣x∣<1
x∣<1
Commented by redmiiuser last updated on 03/Apr/20
but why not  ∣x∣>1
butwhynotx∣>1
Commented by redmiiuser last updated on 03/Apr/20
mr jagoll why Σ_(n=1) ^n ∗∗
mrjagollwhynn=1
Commented by jagoll last updated on 03/Apr/20
o yes it typo
oyesittypo
Commented by redmiiuser last updated on 03/Apr/20
then what are the limits  of summation.
thenwhatarethelimitsofsummation.
Commented by redmiiuser last updated on 03/Apr/20
cananyone comment
cananyonecomment
Commented by Joel578 last updated on 03/Apr/20
(1/(1 + x)) = 1 − x + x^2  − x^3  + ...                = Σ_(n=0) ^∞  (−1)^n x^n     Σ_(n=0) ^∞  (−1)^n x^n  will converge if ∣x∣<1, otherwise diverge
11+x=1x+x2x3+=n=0(1)nxnn=0(1)nxnwillconvergeifx∣<1,otherwisediverge

Leave a Reply

Your email address will not be published. Required fields are marked *