Question Number 33515 by alekan251 last updated on 18/Apr/18
$${expand}\:\alpha^{\mathrm{4}} +\beta^{\beta\:\:} {please} \\ $$
Commented by math khazana by abdo last updated on 18/Apr/18
$${if}\:{you}\:{mean}\:\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\:\:\:\:{from}\:{R} \\ $$$$=\:\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} \:+\left(\beta^{\mathrm{2}} \right)^{\mathrm{2}} \:=\:\left(\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \\ $$$$=\:\left(\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \:−\sqrt{\mathrm{2}}\:\alpha\beta\right)\left(\:\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \:+\sqrt{\mathrm{2}}\:\:\alpha\beta\right) \\ $$$${if}\:\alpha\:{and}\beta\:{from}\:{R}\:\:{let}\:{fix}\:\beta\:\:{and}\:{the}\:{roots}\:{of} \\ $$$$\alpha^{\mathrm{2}} \:\:−\sqrt{\mathrm{2}}\:\alpha\beta\:\:+\beta^{\mathrm{2}} \\ $$$$\Delta\:=\:\left(−\sqrt{\mathrm{2}}\beta\right)^{\mathrm{2}} \:−\mathrm{4}\beta^{\mathrm{2}} \:=\:−\mathrm{2}\beta^{\mathrm{2}} \:=\left({i}\sqrt{\mathrm{2}}\beta\right)^{\mathrm{2}} \\ $$$$\alpha_{\mathrm{1}} =\frac{\sqrt{\mathrm{2}}\beta\:+{i}\sqrt{\mathrm{2}}\beta}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{2}}\beta}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$$\alpha_{\mathrm{2}} =\:\frac{\sqrt{\mathrm{2}}\:\beta\:−{i}\sqrt{\mathrm{2}}\beta}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{2}}\beta}{\mathrm{2}}\left(\mathrm{1}−{i}\right)\:{also}\:{we}\:{have} \\ $$$$\alpha^{\mathrm{2}} \:\:+\sqrt{\mathrm{2}}\alpha\beta\:+\beta^{\mathrm{2}} \:=\:\alpha^{\mathrm{2}} \:−\sqrt{\mathrm{2}}\alpha\left(−\beta\right)\:+\left(−\beta\right)^{\mathrm{2}} \:{so}\:{the} \\ $$$${roots}\:{are}\:\:{t}_{\mathrm{1}} =−\frac{\beta\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right)\:\:{and}\:{t}_{\mathrm{2}} =−\frac{\beta\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}−{i}\right) \\ $$$$\alpha^{\mathrm{4}} \:+\beta^{\mathrm{4}} \:=\:\left(\alpha\:−\alpha_{\mathrm{1}} \right)\left(\alpha−\alpha_{\mathrm{2}} \right)\left(\alpha\:−{t}_{\mathrm{1}} \right)\left(\alpha\:−{t}_{\mathrm{2}} \right)\:. \\ $$