Menu Close

expand-4-please-




Question Number 33515 by alekan251 last updated on 18/Apr/18
expand α^4 +β^(β  ) please
expandα4+ββplease
Commented by math khazana by abdo last updated on 18/Apr/18
if you mean  α^4  + β^4      from R  = (α^2 )^2  +(β^2 )^2  = (α^2  +β^2 )^2  −2α^2 β^2   = (α^2  +β^2  −(√2) αβ)( α^2  +β^2  +(√2)  αβ)  if α andβ from R  let fix β  and the roots of  α^2   −(√2) αβ  +β^2   Δ = (−(√2)β)^2  −4β^2  = −2β^2  =(i(√2)β)^2   α_1 =(((√2)β +i(√2)β)/2) =(((√2)β)/2)(1+i)  α_2 = (((√2) β −i(√2)β)/2) =(((√2)β)/2)(1−i) also we have  α^2   +(√2)αβ +β^2  = α^2  −(√2)α(−β) +(−β)^2  so the  roots are  t_1 =−((β(√2))/2)(1+i)  and t_2 =−((β(√2))/2)(1−i)  α^4  +β^4  = (α −α_1 )(α−α_2 )(α −t_1 )(α −t_2 ) .
ifyoumeanα4+β4fromR=(α2)2+(β2)2=(α2+β2)22α2β2=(α2+β22αβ)(α2+β2+2αβ)ifαandβfromRletfixβandtherootsofα22αβ+β2Δ=(2β)24β2=2β2=(i2β)2α1=2β+i2β2=2β2(1+i)α2=2βi2β2=2β2(1i)alsowehaveα2+2αβ+β2=α22α(β)+(β)2sotherootsaret1=β22(1+i)andt2=β22(1i)α4+β4=(αα1)(αα2)(αt1)(αt2).

Leave a Reply

Your email address will not be published. Required fields are marked *