Menu Close

expand-ln-1-sin-x-right-up-to-the-term-in-x-3-




Question Number 90018 by Rio Michael last updated on 20/Apr/20
expand , ln(1 + sin x) right up to the term in x^3
expand,ln(1+sinx)rightuptotheterminx3
Commented by mathmax by abdo last updated on 21/Apr/20
sinx =x−(x^3 /6) +o(x^3 ) ⇒ln(1+sinx)=ln(1+x−(x^3 /6) +o(x^3 ))  ln^′ (1+u) =(1/(1+u)) =1−u +u^2 −u^3  +o(u^3 ) ⇒  ln(1+u)=u−(u^2 /2) +(u^3 /3) +o(u^3 ) ⇒  ln(1+x−(x^3 /6))=x−(x^3 /6)−(1/2)(x−(x^3 /6))^2 +(((x−(x^3 /6))^3 )/3)  +o(x^3 )  =x−(x^3 /6)−(1/2)(x^2 −(1/3)x^4  +(x^6 /(36))) +(1/3)x^3 (1−(x^2 /6))^3  +o(x^3 )  =x−(x^3 /6)−(1/2)x^2 +(1/6)x^4 −(x^6 /(72)) +(1/3)x^3 (1−3(x^2 /6)+...) +o(x^3 )  =x−(x^3 /6)−(1/2)x^2  +(1/3)x^3  +o(x^3 )  =x−(1/2)x^2  +(1/6)x^3  +o(x^3 )
sinx=xx36+o(x3)ln(1+sinx)=ln(1+xx36+o(x3))ln(1+u)=11+u=1u+u2u3+o(u3)ln(1+u)=uu22+u33+o(u3)ln(1+xx36)=xx3612(xx36)2+(xx36)33+o(x3)=xx3612(x213x4+x636)+13x3(1x26)3+o(x3)=xx3612x2+16x4x672+13x3(13x26+)+o(x3)=xx3612x2+13x3+o(x3)=x12x2+16x3+o(x3)
Commented by Rio Michael last updated on 21/Apr/20
thanks sir
thankssir
Answered by mr W last updated on 21/Apr/20
y=ln (1+sin x) ⇒y(0)=0  y^((1)) =((cos x)/(1+sin x)) ⇒y^((1)) (0)=1  y^((2)) =−((sin x)/(1+sin x))−((cos^2  x)/((1+sin x)^2 )) ⇒y^((2)) (0)=−1  y^((3)) =−((cos x)/(1+sin x))+((3 sin x cos x)/((1+sin x)^2 ))+((2cos^3  x)/((1+sin x)^3 ))⇒y^((3)) (0)=1  ⇒ln (1+sin x)=x−(x^2 /2)+(x^3 /6)+o(x^3 )
y=ln(1+sinx)y(0)=0y(1)=cosx1+sinxy(1)(0)=1y(2)=sinx1+sinxcos2x(1+sinx)2y(2)(0)=1y(3)=cosx1+sinx+3sinxcosx(1+sinx)2+2cos3x(1+sinx)3y(3)(0)=1ln(1+sinx)=xx22+x36+o(x3)
Commented by Rio Michael last updated on 21/Apr/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *