Question Number 13724 by prakash jain last updated on 22/May/17

Commented by prakash jain last updated on 02/Jun/17

Commented by RasheedSoomro last updated on 03/Jun/17

Commented by RasheedSoomro last updated on 12/Jun/17

Answered by RasheedSoomro last updated on 12/Jun/17
![If d is required digit then ((1000!)/(10^(249) ))≡d(mod 10) ((1000!)/(2^(249) ×5^(249) ))≡d(mod 10) ((1000!)/(2^(52) ×(5×10×15×...×1000)))≡d(mod 10) All the 5′s come in 5×10×...×1000. Some 2′s are also included in 5×...×1000 One 2 per each multiple of 10′s =100 2′s One extra 2 per each multiple of 20′s =50 2′s One extra 2 per each multiple of 40′s =25 2′s One extra 2 per each multiple of 80′s =12 2′s One extra 2 per each multiple of 160′s =6 2′s One extra 2 per each multiple of 320′s =3 2′s One extra 2 per each multiple of 640′s =1 2′s _(−) Total 2′s included in 5×10×...×1000=197 2′s Remaining 2′s =249−197=52 ((1000!)/(2^(52) ×(5×10×15×...×1000)))×2^(52) ≡d×2^(52) (mod 10) ((1000!)/(5×10×15×...×1000))≡d×2^(52) (mod 10) ((1000!)/(5×10×15×...×1000))≡6(mod 10) (For proof see Q# 14757 ) So d×2^(52) ≡6(mod 10)............(i) We can verify that 2^4 ≡6(mod 10) (2^4 )^3 ≡6^3 ≡6(mod 10) 2^(12) ×2≡6×2≡2(mod 10) 2^(13) ≡2(mod 10) (2^(13) )^4 ≡2^4 ≡6(mod 10) 2^(52) ≡6(mod 10) 1×2^(52) ≡1×6≡6(mod 10) ]×1......(ii) 2×2^(52) ≡2×6≡2(mod 10) ]×2 3×2^(52) ≡3×6≡8(mod 10) ]×3 4×2^(52) ≡4×6≡4(mod 10) ]×4 5×2^(52) ≡5×6≡0(mod 10) ]×5 6×2^(52) ≡6×6≡6(mod 10) ]×6.....(iii) 7×2^(52) ≡7×6≡2(mod 10) ]×7 8×2^(52) ≡8×6≡8(mod 10) ]×8 9×2^(52) ≡9×6≡4(mod 10) ]×9 Comparing (i) with (ii) & (ii), we see that d=1,6 The answer is 1 or 6 This answer is wrong For right answer see my answer of Q#15543.](https://www.tinkutara.com/question/Q14875.png)
Commented by RasheedSoomro last updated on 10/Jun/17
![Main Steps ((1000!)/(10^(249) ))≡d(mod 10) ((1000!)/(2^(52) ×(5×10×15×...×1000)))≡d(mod 10) ((1000!)/(5×10×15×...×1000))≡6(mod 10) (Q#14757) d×2^(52) ≡6(mod 10) 1×2^(52) ≡1×6≡6(mod 10) ]×1.....(ii) 6×2^(52) ≡6×6≡6 d=1,6](https://www.tinkutara.com/question/Q14888.png)
Commented by mrW1 last updated on 05/Jun/17

Commented by RasheedSoomro last updated on 05/Jun/17

Commented by RasheedSoomro last updated on 05/Jun/17

Commented by mrW1 last updated on 05/Jun/17

Commented by RasheedSoomro last updated on 05/Jun/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17
![1000!=2^α 3^β 5^γ ........ n≤x<n+1⇒[x]=n α=[((1000)/2)]+[((1000)/2^2 )]+[((1000)/2^3 )]+[((1000)/2^4 )]+[((1000)/2^5 )]+ +[((1000)/2^6 )]+[((1000)/2^7 )]+[((1000)/2^8 )]+[((1000)/2^9 )]+[((1000)/2^(10) )]+.... =500+250+125+62+31+15+7+3+1+0=994 γ=[((1000)/5)]+[((1000)/(25))]+[((1000)/(125))]+[((1000)/(625))]+0+...= =200+40+8+1+0=249 so: 1000! ,is dividible by number: (2×5)^(249) .i.e: 1000! have 249 zero′s on it′s end.](https://www.tinkutara.com/question/Q15486.png)