Menu Close

Expansion-of-1000-has-249-0-s-at-the-end-Find-the-first-non-zero-digit-from-right-1000-d000-00-What-is-the-value-of-d-




Question Number 13724 by prakash jain last updated on 22/May/17
Expansion of 1000! has 249, 0′s at the end  Find the first non−zero digit from  right.  1000!=......d000...00  What is the value of d?
Expansionof1000!has249,0sattheendFindthefirstnonzerodigitfromright.1000!=d00000Whatisthevalueofd?
Commented by prakash jain last updated on 02/Jun/17
249 5′s come from following  200 multiples of 5  40 multiples of 25 (1 extra)  8 multiples of 125 (1 extra)  1 multiples of 625 (1 extra)  249=⌊((1000)/5)⌋+⌊((1000)/(25))⌋+⌊((1000)/(125))⌋+⌊((1000)/(615))⌋  The question is asking for nonzero  digits just before the zeros.
2495scomefromfollowing200multiplesof540multiplesof25(1extra)8multiplesof125(1extra)1multiplesof625(1extra)249=10005+100025+1000125+1000615Thequestionisaskingfornonzerodigitsjustbeforethezeros.
Commented by RasheedSoomro last updated on 03/Jun/17
Thanks for clarification.I felt mistake of   my thinking after a while.That′s why  I deleted my comment.
Thanksforclarification.Ifeltmistakeofmythinkingafterawhile.ThatswhyIdeletedmycomment.
Commented by RasheedSoomro last updated on 12/Jun/17
For right anzwer please see Q#15543
You can't use 'macro parameter character #' in math mode
Answered by RasheedSoomro last updated on 12/Jun/17
If d is required digit then  ((1000!)/(10^(249) ))≡d(mod 10)  ((1000!)/(2^(249) ×5^(249) ))≡d(mod 10)  ((1000!)/(2^(52) ×(5×10×15×...×1000)))≡d(mod 10)  All the 5′s come in 5×10×...×1000.  Some 2′s are also included in 5×...×1000       One 2 per each multiple  of 10′s =100 2′s       One extra  2 per each multiple  of 20′s =50 2′s       One extra  2 per each multiple  of 40′s =25 2′s       One extra  2 per each multiple  of 80′s =12 2′s       One extra  2 per each multiple  of 160′s =6 2′s       One extra  2 per each multiple  of 320′s =3 2′s       One extra  2 per each multiple  of 640′s =1 2′s    _(−)         Total 2′s included in 5×10×...×1000=197  2′s         Remaining 2′s =249−197=52  ((1000!)/(2^(52) ×(5×10×15×...×1000)))×2^(52) ≡d×2^(52) (mod 10)  ((1000!)/(5×10×15×...×1000))≡d×2^(52) (mod 10)  ((1000!)/(5×10×15×...×1000))≡6(mod 10)                                         (For proof see Q# 14757   )  So        d×2^(52) ≡6(mod 10)............(i)    We can verify that                    2^4 ≡6(mod 10)                    (2^4 )^3 ≡6^3 ≡6(mod 10)                    2^(12) ×2≡6×2≡2(mod 10)                    2^(13) ≡2(mod 10)                    (2^(13) )^4 ≡2^4 ≡6(mod 10)                 2^(52) ≡6(mod 10)                 1×2^(52) ≡1×6≡6(mod 10)       ]×1......(ii)                 2×2^(52) ≡2×6≡2(mod 10)       ]×2                 3×2^(52) ≡3×6≡8(mod 10)       ]×3                4×2^(52) ≡4×6≡4(mod 10)       ]×4                5×2^(52) ≡5×6≡0(mod 10)       ]×5                6×2^(52) ≡6×6≡6(mod 10)       ]×6.....(iii)                7×2^(52) ≡7×6≡2(mod 10)       ]×7                8×2^(52) ≡8×6≡8(mod 10)       ]×8                9×2^(52) ≡9×6≡4(mod 10)       ]×9  Comparing (i) with (ii) & (ii), we see that                  d=1,6  The answer is  1  or   6  This answer is wrong  For right answer see my answer  of Q#15543.
Ifdisrequireddigitthen1000!10249d(mod10)1000!2249×5249d(mod10)1000!252×(5×10×15××1000)d(mod10)Allthe5scomein5×10××1000.Some2sarealsoincludedin5××1000One2pereachmultipleof10s=1002sOneextra2pereachmultipleof20s=502sOneextra2pereachmultipleof40s=252sOneextra2pereachmultipleof80s=122sOneextra2pereachmultipleof160s=62sOneextra2pereachmultipleof320s=32sOneextra2pereachmultipleof640s=12sTotal2sincludedin5×10××1000=1972sRemaining2s=249197=521000!252×(5×10×15××1000)×252d×252(mod10)1000!5×10×15××1000d×252(mod10)1000!5×10×15××10006(mod10)You can't use 'macro parameter character #' in math modeSod×2526(mod10)(i)Wecanverifythat246(mod10)(24)3636(mod10)212×26×22(mod10)2132(mod10)(213)4246(mod10)2526(mod10)1×2521×66(mod10)]×1(ii)2×2522×62(mod10)]×23×2523×68(mod10)]×34×2524×64(mod10)]×45×2525×60(mod10)]×56×2526×66(mod10)]×6..(iii)7×2527×62(mod10)]×78×2528×68(mod10)]×89×2529×64(mod10)]×9Comparing(i)with(ii)&(ii),weseethatd=1,6Theansweris1or6ThisansweriswrongForrightanswerseemyanswerYou can't use 'macro parameter character #' in math mode
Commented by RasheedSoomro last updated on 10/Jun/17
Main Steps  ((1000!)/(10^(249) ))≡d(mod 10)  ((1000!)/(2^(52) ×(5×10×15×...×1000)))≡d(mod 10)    ((1000!)/(5×10×15×...×1000))≡6(mod 10)  (Q#14757)        d×2^(52) ≡6(mod 10)        1×2^(52) ≡1×6≡6(mod 10)       ]×1.....(ii)         6×2^(52) ≡6×6≡6         d=1,6
MainSteps1000!10249d(mod10)1000!252×(5×10×15××1000)d(mod10)You can't use 'macro parameter character #' in math moded×2526(mod10)1×2521×66(mod10)]×1..(ii)6×2526×66d=1,6
Commented by mrW1 last updated on 05/Jun/17
thank you! i am very impressed!   i need more time to understand your  working.  please check! the last non−zero digit  should be 2.
thankyou!iamveryimpressed!ineedmoretimetounderstandyourworking.pleasecheck!thelastnonzerodigitshouldbe2.
Commented by RasheedSoomro last updated on 05/Jun/17
Sir I caught an error inQ#14757,and  correct it. But the answer doesn′t came  2. Answer after correcting error comes 1  May be there is an other error too.  I′m trying to make my answer error-free.
You can't use 'macro parameter character #' in math modecorrectit.Buttheanswerdoesntcame2.Answeraftercorrectingerrorcomes1Maybethereisanothererrortoo.Imtryingtomakemyanswererrorfree.
Commented by RasheedSoomro last updated on 05/Jun/17
I had edited this post and once changes  had been public  But now after few hours , I am seeing an old version of  the post. I mean changes disappeared!!!  !?!!!???!!!
IhadeditedthispostandoncechangeshadbeenpublicButnowafterfewhours,Iamseeinganoldversionofthepost.Imeanchangesdisappeared!!!!?!!!???!!!
Commented by mrW1 last updated on 05/Jun/17
I saw your changed post indeed. How   could the changes go lost?
Isawyourchangedpostindeed.Howcouldthechangesgolost?
Commented by RasheedSoomro last updated on 05/Jun/17
Thanks for witness! I have  reported  to the developer of the forum also.
Thanksforwitness!Ihavereportedtothedeveloperoftheforumalso.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17
1000!=2^α 3^β 5^γ ........  n≤x<n+1⇒[x]=n  α=[((1000)/2)]+[((1000)/2^2 )]+[((1000)/2^3 )]+[((1000)/2^4 )]+[((1000)/2^5 )]+  +[((1000)/2^6 )]+[((1000)/2^7 )]+[((1000)/2^8 )]+[((1000)/2^9 )]+[((1000)/2^(10) )]+....  =500+250+125+62+31+15+7+3+1+0=994  γ=[((1000)/5)]+[((1000)/(25))]+[((1000)/(125))]+[((1000)/(625))]+0+...=  =200+40+8+1+0=249  so: 1000! ,is dividible by number:  (2×5)^(249) .i.e: 1000! have 249 zero′s on  it′s end.
1000!=2α3β5γ..nx<n+1[x]=nα=[10002]+[100022]+[100023]+[100024]+[100025]++[100026]+[100027]+[100028]+[100029]+[1000210]+.=500+250+125+62+31+15+7+3+1+0=994γ=[10005]+[100025]+[1000125]+[1000625]+0+==200+40+8+1+0=249so:1000!,isdividiblebynumber:(2×5)249.i.e:1000!have249zerosonitsend.

Leave a Reply

Your email address will not be published. Required fields are marked *