Menu Close

explicit-f-x-0-ln-1-xe-t-dt-with-x-lt-1-




Question Number 78620 by mathmax by abdo last updated on 19/Jan/20
explicit  f(x) =∫_0 ^(+∞) ln(1−xe^(−t) )dt  with ∣x∣<1
explicitf(x)=0+ln(1xet)dtwithx∣<1
Answered by mind is power last updated on 19/Jan/20
ln(1−xe^(−t) )=−Σ(((xe^(−t) )^k )/k)  ∫_0 ^(+∞) ln(1−xe^(−t) )dt=∫_0 ^(+∞) −Σ((x^k e^(−kt) )/k)dt  =Σ[_0 ^(+∞) (e^(−kt) /k^2 ).x^k ]=−Σ_(k≥1) (x^k /k^2 )=∫_0 ^x ((ln(1−t))/t)dx=Li_2 (x)
ln(1xet)=Σ(xet)kk0+ln(1xet)dt=0+Σxkektkdt=Σ[0+ektk2.xk]=k1xkk2=0xln(1t)tdx=Li2(x)

Leave a Reply

Your email address will not be published. Required fields are marked *