Question Number 113630 by mathmax by abdo last updated on 14/Sep/20

Answered by Dwaipayan Shikari last updated on 15/Sep/20
![I(a)=∫_0 ^(π/4) log(1+acos^2 θ)dθ I′(a)=∫_0 ^(π/4) ((cos^2 θ)/(1+acos^2 θ)) I′(a)=(1/a)∫_0 ^(π/4) 1−(1/(1+acos^2 θ)) I^′ (a)=(π/(4a))−∫^(π/4) ((sec^2 θ)/(sec^2 θ+a))dθ I′(a)=(π/(4a))−∫_0 ^(π/4) ((sec^2 θ)/(tan^2 θ+1+a)) I′(a)=(π/(4a))−∫_0 ^1 (dt/(t^2 +((√(1+a)))^2 )) I′(a)=(π/(4a))−[(1/( (√(1+a))))tan^(−1) (t/( (√(1+a))))]_0 ^1 I(a)=∫(π/(4a))−∫(1/( (√(1+a))))tan^(−1) (1/( (√(1+a))))da I(a)=(π/4)log(a)−∫((2u)/u).tan^(−1) (1/u)du 1+a=u^2 ,1=2u(du/da) I(a)=(π/4)log(a)−2∫tan^(−1) (1/u)du tan^(−1) (1/u)=α I(a)=(π/4)log(a)−2utan^(−1) (1/u)−2∫(1/( u(√(1+(1/u^2 )))))du I(a)=(π/4)log(a)−2(√(1+a)) tan^(−1) (1/( (√(1+a))))−2log(u+(√(u^2 +1)))+C I(a)=(π/4)log(a)−2(√(1+a)) tan^(−1) (1/( (√(1+a))))−2log((√(1+a))+(√(2+a)))+C I(−1)=(π^2 /4)i+C=∫_0 ^(π/4) log(1−cos^2 x)dx ∫_0 ^(π/4) log(1−cos^2 x)dx=∫_(−(π/2)) ^(π/2) log(sinx)dx=∫_0 ^(π/2) log(sinx)+∫_(−(π/2)) ^0 log(sinx) =−(π/2)log(2)+∫_(−(π/2)) ^0 log(−1)+log(cosx)=(π^2 /2)i I(−1)=(π^2 /4)i+C=((π^2 i)/2)⇒C=(π^2 /4)i I(a)=(π/4)log(a)−2(√(1+a)) tan^(−1) (1/( (√(1+a))))−2log((√(1+a))+(√(2+a)))+(π^2 /4)i](https://www.tinkutara.com/question/Q113639.png)
Commented by Tawa11 last updated on 06/Sep/21

Answered by mathmax by abdo last updated on 14/Sep/20

Answered by Olaf last updated on 14/Sep/20
![(1/(1+acos^2 θ)) = Σ_(k=0) ^∞ (−1)^k a^k cos^(2k) θ −((2acosθsinθ)/(1+acos^2 θ)) = −2asinθcosθΣ_(k=0) ^∞ (−1)^k a^k cos^(2k) θ −((2acosθsinθ)/(1+acos^2 θ)) = −2asinθΣ_(k=0) ^∞ (−1)^k a^k cos^(2k+1) θ ln(1+acos^2 θ) = −2aΣ_(k=0) ^∞ (−1)^k a^k ((cos^(2k+2) θ)/(2k+2)) ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = −2aΣ_(k=0) ^∞ (((−1)^k a^k )/(2k+2))∫_0 ^(π/4) cos^(2k+2) θdθ cos^(2k) θ = (((1+cos2θ)/2))^k cos^(2k) θ = (1/2^k )Σ_(p=0) ^k C_k ^p cos^p 2θ ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = −2aΣ_(k=0) ^∞ (((−1)^k a^k )/(2k+2))[((cos^2 θ)/2^k )Σ_(p=0) ^k C_k ^p cos^p 2θ]_0 ^(π/4) ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = 2aΣ_(k=0) ^∞ (((−1)^k a^k )/((2k+2)2^k ))Σ_(p=0) ^k C_k ^p ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = 2aΣ_(k=0) ^∞ (((−1)^k a^k )/((2k+2))) ...](https://www.tinkutara.com/question/Q113702.png)