Menu Close

explicit-g-a-0-pi-4-ln-1-acos-2-d-




Question Number 113630 by mathmax by abdo last updated on 14/Sep/20
explicit g(a) =∫_0 ^(π/4)  ln(1+acos^2 θ)dθ
explicitg(a)=0π4ln(1+acos2θ)dθ
Answered by Dwaipayan Shikari last updated on 15/Sep/20
I(a)=∫_0 ^(π/4) log(1+acos^2 θ)dθ  I′(a)=∫_0 ^(π/4) ((cos^2 θ)/(1+acos^2 θ))  I′(a)=(1/a)∫_0 ^(π/4) 1−(1/(1+acos^2 θ))  I^′ (a)=(π/(4a))−∫^(π/4) ((sec^2 θ)/(sec^2 θ+a))dθ  I′(a)=(π/(4a))−∫_0 ^(π/4) ((sec^2 θ)/(tan^2 θ+1+a))  I′(a)=(π/(4a))−∫_0 ^1 (dt/(t^2 +((√(1+a)))^2 ))  I′(a)=(π/(4a))−[(1/( (√(1+a))))tan^(−1) (t/( (√(1+a))))]_0 ^1   I(a)=∫(π/(4a))−∫(1/( (√(1+a))))tan^(−1) (1/( (√(1+a))))da  I(a)=(π/4)log(a)−∫((2u)/u).tan^(−1) (1/u)du                       1+a=u^2 ,1=2u(du/da)  I(a)=(π/4)log(a)−2∫tan^(−1) (1/u)du                                  tan^(−1) (1/u)=α  I(a)=(π/4)log(a)−2utan^(−1) (1/u)−2∫(1/( u(√(1+(1/u^2 )))))du  I(a)=(π/4)log(a)−2(√(1+a)) tan^(−1) (1/( (√(1+a))))−2log(u+(√(u^2 +1)))+C  I(a)=(π/4)log(a)−2(√(1+a)) tan^(−1) (1/( (√(1+a))))−2log((√(1+a))+(√(2+a)))+C  I(−1)=(π^2 /4)i+C=∫_0 ^(π/4) log(1−cos^2 x)dx  ∫_0 ^(π/4) log(1−cos^2 x)dx=∫_(−(π/2)) ^(π/2) log(sinx)dx=∫_0 ^(π/2) log(sinx)+∫_(−(π/2)) ^0 log(sinx)  =−(π/2)log(2)+∫_(−(π/2)) ^0 log(−1)+log(cosx)=(π^2 /2)i  I(−1)=(π^2 /4)i+C=((π^2 i)/2)⇒C=(π^2 /4)i  I(a)=(π/4)log(a)−2(√(1+a)) tan^(−1) (1/( (√(1+a))))−2log((√(1+a))+(√(2+a)))+(π^2 /4)i
I(a)=0π4log(1+acos2θ)dθI(a)=0π4cos2θ1+acos2θI(a)=1a0π4111+acos2θI(a)=π4aπ4sec2θsec2θ+adθI(a)=π4a0π4sec2θtan2θ+1+aI(a)=π4a01dtt2+(1+a)2I(a)=π4a[11+atan1t1+a]01I(a)=π4a11+atan111+adaI(a)=π4log(a)2uu.tan11udu1+a=u2,1=2ududaI(a)=π4log(a)2tan11udutan11u=αI(a)=π4log(a)2utan11u21u1+1u2duI(a)=π4log(a)21+atan111+a2log(u+u2+1)+CI(a)=π4log(a)21+atan111+a2log(1+a+2+a)+CI(1)=π24i+C=0π4log(1cos2x)dx0π4log(1cos2x)dx=π2π2log(sinx)dx=0π2log(sinx)+π20log(sinx)=π2log(2)+π20log(1)+log(cosx)=π22iI(1)=π24i+C=π2i2C=π24iI(a)=π4log(a)21+atan111+a2log(1+a+2+a)+π24i
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by mathmax by abdo last updated on 14/Sep/20
∣a∣<1
a∣<1
Answered by Olaf last updated on 14/Sep/20
(1/(1+acos^2 θ)) = Σ_(k=0) ^∞ (−1)^k a^k cos^(2k) θ  −((2acosθsinθ)/(1+acos^2 θ)) = −2asinθcosθΣ_(k=0) ^∞ (−1)^k a^k cos^(2k) θ  −((2acosθsinθ)/(1+acos^2 θ)) = −2asinθΣ_(k=0) ^∞ (−1)^k a^k cos^(2k+1) θ  ln(1+acos^2 θ) = −2aΣ_(k=0) ^∞ (−1)^k a^k ((cos^(2k+2) θ)/(2k+2))  ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = −2aΣ_(k=0) ^∞ (((−1)^k a^k )/(2k+2))∫_0 ^(π/4) cos^(2k+2) θdθ  cos^(2k) θ = (((1+cos2θ)/2))^k   cos^(2k) θ = (1/2^k )Σ_(p=0) ^k C_k ^p cos^p 2θ  ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = −2aΣ_(k=0) ^∞ (((−1)^k a^k )/(2k+2))[((cos^2 θ)/2^k )Σ_(p=0) ^k C_k ^p cos^p 2θ]_0 ^(π/4)   ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = 2aΣ_(k=0) ^∞ (((−1)^k a^k )/((2k+2)2^k ))Σ_(p=0) ^k C_k ^p   ∫_0 ^(π/4) ln(1+acos^2 θ)dθ = 2aΣ_(k=0) ^∞ (((−1)^k a^k )/((2k+2)))  ...
11+acos2θ=k=0(1)kakcos2kθ2acosθsinθ1+acos2θ=2asinθcosθk=0(1)kakcos2kθ2acosθsinθ1+acos2θ=2asinθk=0(1)kakcos2k+1θln(1+acos2θ)=2ak=0(1)kakcos2k+2θ2k+20π4ln(1+acos2θ)dθ=2ak=0(1)kak2k+20π4cos2k+2θdθcos2kθ=(1+cos2θ2)kcos2kθ=12kkp=0Ckpcosp2θ0π4ln(1+acos2θ)dθ=2ak=0(1)kak2k+2[cos2θ2kkp=0Ckpcosp2θ]0π40π4ln(1+acos2θ)dθ=2ak=0(1)kak(2k+2)2kkp=0Ckp0π4ln(1+acos2θ)dθ=2ak=0(1)kak(2k+2)

Leave a Reply

Your email address will not be published. Required fields are marked *