Question Number 113630 by mathmax by abdo last updated on 14/Sep/20
$$\mathrm{explicit}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{acos}^{\mathrm{2}} \theta\right)\mathrm{d}\theta \\ $$
Answered by Dwaipayan Shikari last updated on 15/Sep/20
$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left(\mathrm{1}+{acos}^{\mathrm{2}} \theta\right){d}\theta \\ $$$${I}'\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{cos}^{\mathrm{2}} \theta}{\mathrm{1}+{acos}^{\mathrm{2}} \theta} \\ $$$${I}'\left({a}\right)=\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{acos}^{\mathrm{2}} \theta} \\ $$$${I}^{'} \left({a}\right)=\frac{\pi}{\mathrm{4}{a}}−\int^{\frac{\pi}{\mathrm{4}}} \frac{{sec}^{\mathrm{2}} \theta}{{sec}^{\mathrm{2}} \theta+{a}}{d}\theta \\ $$$${I}'\left({a}\right)=\frac{\pi}{\mathrm{4}{a}}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{sec}^{\mathrm{2}} \theta}{{tan}^{\mathrm{2}} \theta+\mathrm{1}+{a}} \\ $$$${I}'\left({a}\right)=\frac{\pi}{\mathrm{4}{a}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{{t}^{\mathrm{2}} +\left(\sqrt{\mathrm{1}+{a}}\right)^{\mathrm{2}} } \\ $$$${I}'\left({a}\right)=\frac{\pi}{\mathrm{4}{a}}−\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}{tan}^{−\mathrm{1}} \frac{{t}}{\:\sqrt{\mathrm{1}+{a}}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${I}\left({a}\right)=\int\frac{\pi}{\mathrm{4}{a}}−\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}{da} \\ $$$${I}\left({a}\right)=\frac{\pi}{\mathrm{4}}{log}\left({a}\right)−\int\frac{\mathrm{2}{u}}{{u}}.{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{u}}{du}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}+{a}={u}^{\mathrm{2}} ,\mathrm{1}=\mathrm{2}{u}\frac{{du}}{{da}} \\ $$$${I}\left({a}\right)=\frac{\pi}{\mathrm{4}}{log}\left({a}\right)−\mathrm{2}\int{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{u}}{du}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{u}}=\alpha \\ $$$${I}\left({a}\right)=\frac{\pi}{\mathrm{4}}{log}\left({a}\right)−\mathrm{2}{utan}^{−\mathrm{1}} \frac{\mathrm{1}}{{u}}−\mathrm{2}\int\frac{\mathrm{1}}{\:{u}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}}{du} \\ $$$${I}\left({a}\right)=\frac{\pi}{\mathrm{4}}{log}\left({a}\right)−\mathrm{2}\sqrt{\mathrm{1}+{a}}\:{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}−\mathrm{2}{log}\left({u}+\sqrt{{u}^{\mathrm{2}} +\mathrm{1}}\right)+{C} \\ $$$${I}\left({a}\right)=\frac{\pi}{\mathrm{4}}{log}\left({a}\right)−\mathrm{2}\sqrt{\mathrm{1}+{a}}\:{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}−\mathrm{2}{log}\left(\sqrt{\mathrm{1}+{a}}+\sqrt{\mathrm{2}+{a}}\right)+{C} \\ $$$${I}\left(−\mathrm{1}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{i}+{C}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right){dx}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right){dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right)+\int_{−\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} {log}\left({sinx}\right) \\ $$$$=−\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right)+\int_{−\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} {log}\left(−\mathrm{1}\right)+{log}\left({cosx}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}{i} \\ $$$${I}\left(−\mathrm{1}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{i}+{C}=\frac{\pi^{\mathrm{2}} {i}}{\mathrm{2}}\Rightarrow{C}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{i} \\ $$$${I}\left({a}\right)=\frac{\pi}{\mathrm{4}}{log}\left({a}\right)−\mathrm{2}\sqrt{\mathrm{1}+{a}}\:{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}−\mathrm{2}{log}\left(\sqrt{\mathrm{1}+{a}}+\sqrt{\mathrm{2}+{a}}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{i} \\ $$
Commented by Tawa11 last updated on 06/Sep/21
$$\mathrm{great}\:\mathrm{sir} \\ $$
Answered by mathmax by abdo last updated on 14/Sep/20
$$\mid\mathrm{a}\mid<\mathrm{1} \\ $$
Answered by Olaf last updated on 14/Sep/20
$$\frac{\mathrm{1}}{\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta}\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} \mathrm{cos}^{\mathrm{2}{k}} \theta \\ $$$$−\frac{\mathrm{2}{a}\mathrm{cos}\theta\mathrm{sin}\theta}{\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta}\:=\:−\mathrm{2}{a}\mathrm{sin}\theta\mathrm{cos}\theta\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} \mathrm{cos}^{\mathrm{2}{k}} \theta \\ $$$$−\frac{\mathrm{2}{a}\mathrm{cos}\theta\mathrm{sin}\theta}{\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta}\:=\:−\mathrm{2}{a}\mathrm{sin}\theta\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} \mathrm{cos}^{\mathrm{2}{k}+\mathrm{1}} \theta \\ $$$$\mathrm{ln}\left(\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta\right)\:=\:−\mathrm{2}{a}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} \frac{\mathrm{cos}^{\mathrm{2}{k}+\mathrm{2}} \theta}{\mathrm{2}{k}+\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta\right){d}\theta\:=\:−\mathrm{2}{a}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} }{\mathrm{2}{k}+\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{cos}^{\mathrm{2}{k}+\mathrm{2}} \theta{d}\theta \\ $$$$\mathrm{cos}^{\mathrm{2}{k}} \theta\:=\:\left(\frac{\mathrm{1}+\mathrm{cos2}\theta}{\mathrm{2}}\right)^{{k}} \\ $$$$\mathrm{cos}^{\mathrm{2}{k}} \theta\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}\mathrm{C}_{{k}} ^{{p}} \mathrm{cos}^{{p}} \mathrm{2}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta\right){d}\theta\:=\:−\mathrm{2}{a}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} }{\mathrm{2}{k}+\mathrm{2}}\left[\frac{\mathrm{cos}^{\mathrm{2}} \theta}{\mathrm{2}^{{k}} }\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}\mathrm{C}_{{k}} ^{{p}} \mathrm{cos}^{{p}} \mathrm{2}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta\right){d}\theta\:=\:\mathrm{2}{a}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} }{\left(\mathrm{2}{k}+\mathrm{2}\right)\mathrm{2}^{{k}} }\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}\mathrm{C}_{{k}} ^{{p}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+{a}\mathrm{cos}^{\mathrm{2}} \theta\right){d}\theta\:=\:\mathrm{2}{a}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} }{\left(\mathrm{2}{k}+\mathrm{2}\right)} \\ $$$$… \\ $$