Menu Close

explicite-f-a-0-lnx-x-2-x-a-dx-with-a-gt-1-4-




Question Number 127777 by Bird last updated on 02/Jan/21
explicite f(a)=∫_0 ^∞  ((lnx)/(x^2 −x+a))dx  with   a>(1/4)
explicitef(a)=0lnxx2x+adxwitha>14
Answered by mathmax by abdo last updated on 03/Jan/21
let f(z)=((ln^2 z)/(z^2 −z+a))  we have f(a)=−(1/2)Re(Σ Res(f,z_i ))  poles of f    →Δ=1−4a<0 ⇒z_1 =((1+i(√(4a−1)))/2)  and z_2 =((1−i(√(4a−1)))/2)  we have ∣z_1 ∣=(1/2)(√(1+4a−1)))=(√a) ⇒  z_1 =(√a)e^(iarctan(√(4a−1)))    and z_2 =(√a)e^(−iarctan(√(4a−1)))   f(z)=((ln^2 z)/((z−z_1 )(z−z_2 )))  Res(f,z_1 )=((ln^2 z_1 )/(z_1 −z_2 )) =(((ln(√a)+iarctan(√(4a))−1)^2 )/(i(√(4a−1))))  =((ln^2 ((√a))+2iln(√a)arctan(√(4a−1))−arctan^2 (√(4a−1)))/(i(√(4a−1))))  Res(f,z_2 )=((ln^2 z_2 )/(z_2 −z_1 )) =(((ln(√a)−iarctan(√(4a−1)))^2 )/(−i(√(4a−1))))  =((ln^2 (√a)−2iln(√a)arctan(√(4a−1))−arctan^2 (√(4a−1)))/(−i(√(4a−1)))) ⇒  Σ Res(f)=(1/(i(√(4a−1)))){ln^2 ((√a))+2iln(√a)arctan(√(4a−1))−arctan^2 (√(4a−1))  −ln^2 (√a)+2iln(√a)arctan(√(4a−1))+arctan^2 (√(4a−1))}  =(1/(i(√(4a−1))))(2iln((√a))arctan(√(4a−1)))=((lna)/( (√(4a−1)))) arctan(√(4a−1)) ⇒  f(a) =−((lna)/(2(√(4a−1)))) arctan(√(4a−1))
letf(z)=ln2zz2z+awehavef(a)=12Re(ΣRes(f,zi))polesoffΔ=14a<0z1=1+i4a12andz2=1i4a12wehavez1∣=121+4a1)=az1=aeiarctan4a1andz2=aeiarctan4a1f(z)=ln2z(zz1)(zz2)Res(f,z1)=ln2z1z1z2=(lna+iarctan4a1)2i4a1=ln2(a)+2ilnaarctan4a1arctan24a1i4a1Res(f,z2)=ln2z2z2z1=(lnaiarctan4a1)2i4a1=ln2a2ilnaarctan4a1arctan24a1i4a1ΣRes(f)=1i4a1{ln2(a)+2ilnaarctan4a1arctan24a1ln2a+2ilnaarctan4a1+arctan24a1}=1i4a1(2iln(a)arctan4a1)=lna4a1arctan4a1f(a)=lna24a1arctan4a1

Leave a Reply

Your email address will not be published. Required fields are marked *